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Connectivity-Based Segmentation in Large-Scale
2-D/3-D Sensor Networks: Algorithm

and Applications
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Abstract—Efficient sensor network design requires a full
understanding of the geometric environment in which sensor
nodes are deployed. In practice, a large-scale sensor network
often has a complex and irregular topology, possibly containing
obstacles/holes. Convex network partitioning, also known as
convex segmentation, is a technique to divide a network into
convex regions in which traditional algorithms designed for a
simple network geometry can be applied. Existing segmentation
algorithms heavily depend on concave node detection, or sink
extraction from the median axis/skeleton, resulting in sensitivity of
performance to network boundary noise. Furthermore, since they
rely on the network's 2-D geometric properties, they do not work
for 3-D cases. This paper presents a novel segmentation approach
based on Morse function, bringing together the notions of convex
components and the Reeb graph of a network. The segmentation is
realized by a distributed and scalable algorithm, named CONSEL,
for CONnectivity-based SEgmentation in Large-scale 2-D/3-D
sensor networks. In CONSEL, several boundary nodes first flood
the network to construct the Reeb graph. The ordinary nodes then
compute mutex pairs locally, generating a coarse segmentation.
Next, neighboring regions that are not mutex pairs are merged
together. Finally, by ignoring mutex pairs that lead to small
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Fig. 1. The topologies of an S-shaped coal mine tunnel and the Chicago airport
terminal building.

concavity, we provide an approximate convex decomposition.
CONSEL has a number of advantages over previous solutions:
1) it works for both 2-D and 3-D sensor networks; 2) it uses merely
network connectivity information; 3) it guarantees a bound for the
generated regions' deviation from convexity. We further propose
to integrate network segmentation with existing applications that
are oriented to simple network geometry. Extensive simulations
show the efficacy of CONSEL in segmenting networks and in im-
proving the performance of two applications: geographic routing
and connectivity-based localization.
Index Terms—Localization, routing, segmentation, wireless

sensor networks.

I. INTRODUCTION

R ECENT years have witnessed a wide usage of 3-D wire-
less sensor networks (WSNs) in emerging applications

where nodes are typically deployed in 3-D settings, such as
safety monitoring of coal mine tunnels [1] [Fig. 1(a)] and fire
detection in the corridors of buildings [15] [Fig. 1(b)]. Effi-
cient sensor network design requires a full understanding of the
geometric environment in which sensor nodes are deployed. In
practice, the global topology of a large-scale sensor network
is rarely in a simple or regular shape, such as a square or a
disk, as assumed in many previous studies (e.g., [6] and [25]).
For example, geographic routing [14] is a routing scheme for
sensor networks, where a nodemakes routing decisions greedily
based on a local coordinates. Specifically, a node routes a mes-
sage to its neighbor closest to the destination. Despite its suc-
cess in regular sensor fields, this protocol fails (or performs
poorly) in irregular and concave areas [16], [17], [27], [30],
[32]. Also, irregular network shapes may lead to inaccurate lo-
calization results, as many existing localization algorithms as-
sume straight-line shortest paths between nodes. This does not

1063-6692 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



16 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 23, NO. 1, FEBRUARY 2015

Fig. 2. Network of 3844 nodes. The average node degree is 16.4. (a) Skeleton result by [32] where nodes in skeleton are shown in dark green. (b) Segmentation
result by [32] or [27] where no obvious geometric features on the boundary exist. Existing algorithms generate a single region. (c) Segmentation result by CONSEL
where four (approximately) convex regions are generated.

hold when the network topology is highly irregular, resulting in
distorted path length estimation [18], [28] and thus inaccurate
localization results.
Numerous methods [16]–[18] have been proposed to improve

the traditional algorithms' performance by adapting them to ir-
regular sensor field. These efforts are mostly application-spe-
cific, increasing the design complexity significantly. Alterna-
tively, to tame the challenges brought by irregular shapes, there
has been an increasing interest on a convex network partition,
also known as segmentation/convex partition [27], [32] (in this
paper, we consider shape segmentation instead of data segmen-
tation [23] or signal field segmentation [33]), which is to divide
a network into convex regions or subnetworks, so that tradi-
tional algorithms designed for a simple geometric region can be
applied with good performance. By doing so, without heavily
modifying particular algorithms, traditional algorithms are able
to perform well in each convex region.

A. Related Work

A pioneer piece of work on sensor network segmentation is
[32]. It first extracts the skeleton and constructs the distance field
of a network. Next, based on flow complex [3], a node on a flow
is assigned a flow direction and identifies itself as a sink if there
is no flow direction. According to the flow direction to the sink,
the ordinary nodes are grouped into regions. Inspired by polyg-
onal partition, the solution in [27] partitions the network via con-
cave node identification on the boundary. The main idea of their
algorithm is to perform bisector-induced convex partitioning.
These segmentation algorithms, unfortunately, depend on the
existence of nodes on distinguished concave boundaries, and
thus they may fail for networks where no such nodes (or sinks
on the skeleton) exist, as shown in Fig. 2. The reason is that their
algorithms do not consider the global topology of the network.
Besides, this dependency makes their performance quite sensi-
tive to boundary noise, e.g., incorrect estimation of boundaries.
Lastly, since they rely on the network's 2-D geometric proper-
ties, they cannot work for 3-D sensor networks. In a 3-D space,
we are aware of one partial solution proposed in [31] based on
bottleneck identification. A parameter named injectivity radius

is calculated by each boundary node. The purpose of this param-
eter is to measure the narrowness of the nearby boundary area,
so as to identify the undesired bottlenecks in a 3-D sensor net-
work. These bottlenecks are then used to partition the network
boundary, and the nonboundary nodes are grouped finally. Thus,
this algorithm does not work for networks without bottlenecks
(see the networks in Fig. 10). In addition, it does not work for
2-D networks.
2-D/3-D segmentation algorithms have been studied in

the computer vision and graphics areas [19], which target
continuous shapes and use centralized solutions. Despite the
resemblance to those works, the problem we strive to address is
more challenging because of the nature of a distributed sensor
network. First, the random deployment of sensor nodes makes
the geometric objects (e.g., holes) not necessarily follow the
properties of their counterparts in a continuous space. The
nature of the random deployment also makes it impractical to
manually identify convex/concave regions during deployment
or extract a graph of the network. Second, in practice, sensor
nodes may have no knowledge of location information. As a
result, internode distance is often estimated by shortest-path
hop count, whose measurement accuracy is adversely affected
by network concavities. Third, since the sensor network is
discrete, it is difficult or impossible to decompose a sensor
network into strictly convex regions due to the boundary
irregularity. It is more meaningful to decompose the network
into approximately convex regions [27], [32]. However, how to
provide a bound of convexity deviation is not straightforward.

B. Our Contributions
This paper proposes a novel segmentation scheme using

Morse function [5], linking the notions of convex regions
and the Reeb graph of a network. We propose CONSEL for
CONNnectivity-based SEgmentation in Large-scale 2-D/3-D
sensor networks. In CONSEL, several boundary nodes first
perform flooding to construct a Reeb graph. The ordinary nodes
then compute mutex pairs locally, generating a coarse segmen-
tation layout. Next, the neighbor regions that are not mutex
pairs are merged. Finally, by ignoring mutex pairs that lead
to small concavities, we provide a configurable bound for the
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Fig. 3. (a) Morse function and level sets. and are two L-components of
. (b) Level sets of a 3-D network.

subnetworks' deviation from convexity. CONSEL is desirable
compared to previous solutions: 1) it works for both 2-D and
3-D sensor networks; 2) it uses merely network connectivity
information; 3) it provides a bound on a region's deviation from
convexity. Additionally, CONSEL works for a variety of radio
models, including the quasi-UDG model, log-normal model,
and the probabilistic connectivity model. CONSEL is fully
distributed and is scalable as its time and message complexities
are both linear with network size. Extensive simulations show
that CONSEL works well in the presence of holes and shape
variation, always yielding appropriate segmentation results.
Furthermore, we propose to integrate network segmentation
with existing applications such as geographic routing and
connectivity-based localization and evaluate their performance
in Section VI.
The remainder of the paper proceeds as follows.

Section II gives the background of Morse functions and Reeb
graph. Section III is devoted to a description of CONSEL
algorithm. Section IV discusses the complexity of CONSEL.
We evaluate our CONSEL in Section V. Section VI proposes
two interesting protocols that integrate shape segmentation
with existing applications. Finally, Section VII concludes the
paper.

II. PRELIMINARIES

A. Morse Functions and Reeb Graph

1) Morse Functions: For a manifold , aMorse function [5]
is a mapping , where is the set of real numbers.
The mapping can be considered as a projection from high-di-
mensional to one-dimensional manifold. In a discrete network,
the Morse function is constructed as follows. First, we select
an origin node , then every other node obtains its hop-count
distance, denoted by , to node . This process establishes a
mapping , where is the set of nonnegative inte-
gers. In Fig. 3, the nodes on the same arc have an equal value of
the Morse function. It is noted that the Morse function is more
general that the level of nodes on the shortest path tree. More-
over, it is useful to proceed on our description of Reeb graph
where we have to make use of the inverse function of Morse
function. Let be the set of nodes, called the th level
set, whose Morse function values are . For example, all the
nodes on the green arc in Fig. 3(a) share the same Morse func-
tion value 5. The zeroth level set, , contains the origin
node only.

Fig. 4. Reeb graphs (red nodes and lines) of two network topologies. Green
dashed arcs represent cuts.

2) Reeb Graph: The Reeb graph [5] is constructed based on
the Morse function of a network. Given a Morse function ,
each of its level sets consists of a number of connected com-
ponents, called level components (L-components for short); see
Fig. 3(a) for an example. In an L-component at level ,
each node has a number of neighbors in the th level.
is referred to nodes at level , and the origin node is the node .
That is, all nodes in are hops away from the origin node. The
set of such above-mentioned neighbors is called 's children
set, denoted by . As a result, the L-components expand as
the level number grows. There are three basic types of events
during the transition from one L-component to its children set
(for simplicity of exposition, we omit composite events).
1) Extend event is a maximal L-component in the

th level.
2) Split event contains two or more L-components in

the th level.
3) Merge event is a subset of an L-component in the

th level, which means that multiple L-components in
the th level share the same connected children set.

A series of extend events may take place in succession [say
the L-components from level 1 to level 5 in Fig. 3(a)], and the
involved L-components will form a connected, multilevel com-
ponent of the network, called a Reeb component. A vertex in
the final Reeb graph, or a Reeb vertex, represents a maximal
Reeb component, and an edge in the Reeb graph, or a Reeb
edge, reflects the split or merge events. Initially, the Reeb graph
is empty. The zeroth-level set , which contains only the
origin node and thus a single L-component, triggers the genera-
tion of the first Reeb vertex . This vertex continues to represent
the descendant L-components until a split or merge event hap-
pens. For a split event [say the L-components from level 5 to
level 6 in Fig. 3(a)], it means that an L-component has ex-
panded into L-components, in which case new Reeb
vertices will be generated as children of in the Reeb graph.
When a merge event happens, it means that multiple L-com-
ponents share the same connected children set, so a new Reeb
vertex will be generated to represent this children set, serving as
the common child of those L-components' corresponding Reeb
vertices.
Fig. 4(a) shows an example of the Reeb graph (red nodes and

edges) corresponding to the network in Fig. 3(a). In Fig. 3(a),
from to , there exists a split event. As such, two
new Reeb vertices and are generated under the original
vertex , which represents the union of through .
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Fig. 4(b) shows another example of Reeb graph corresponding
to a network deployed in a 3-D ring. In this figure, two Reeb
vertices and are merged into a new Reeb vertex .
Generally, a split event happens when a concave node

emerges [5] during the expanding process of L-components.
Here, a concave node [see in Fig. 4(a)] is a node where
the inward angle (i.e., the angle spanning across the sensing
area) is greater than [27]. A merge event happens when the
network topology forms a loop. By capturing the splitting and
looping behavior, the Reeb graph creates a useful abstraction
of the original network topology.
In Fig. 4, the lines and are called cuts, de-

fined as the new L-components arising in the split event, or the
new children set generated by the merge event. The cuts are
meant to separate the regions. In Fig. 4(a), for example, the
two cuts and partition the network into three
regions.

B. Approximate Convexity

For most applications, a strictly convex segmentation is un-
necessary [32], [27]. Therefore, we aim at partitioning the net-
work into approximately convex regions. To that end, we define
an -straight line as follows.
Definition 1 ( -Straight Path): A path between two nodes

and is called an -straight path if and only if any node on
the path is at most away from the Euclidean straight line
between and , where is the radio range of sensor nodes.
It is noted that the term “the radio range” is used in

Definition 1 since here two nodes are assumed to be able to
communicate within the radio range. The concept of -convex
regions thus follows.
Definition 2 ( -Convex Region): A network region is called

an -convex region if within that region, for any two nodes
and , there always exists an -straight path connecting them,
and all the nodes on that path belong to the region.
When the network is segmented into several regions, each

region is approximately convex, or -convex. For example, in
Fig. 4, let and . The dis-
tance function is a mapping from two nodes to the real
number set. To satisfy the condition of -convexity, we should
have . That is, . When

, this condition always holds.

C. Mutex Pairs

In a continuous space, if an area is convex, then it contains
the line segment between every pair of its inner points. This
fact motivates us to consider the relation between inner points
of a network in the light of Morse functions. Here, we use the
term “mutex” to indicate that two nodes/parts can not be in one
convex region.
Definition 3 (Morse Path): Given a network and a Morse

function, a Morse path between two nodes and is a path
on which all nodes have the same Morse function value.
Definition 4 (Mutex Pair): Given a network and a Morse

function, two nodes and are called a mutex pair, denoted
by , if there exists no Morse path between them.
In Fig. 4, it is easy to find a node in area and a node in

area that form a mutex pair. Intuitively, after segmentation,

they should not be in the same region. For two disjoint regions
and , if there is a mutex pair formed by a node from

and a node from , then and are called a mutex pair as
well, denoted by . Note that a node can be regarded as a
singleton set, so a mutex pair of regions in fact includes a mutex
pair of nodes.
Given the Reeb graph constructed from , the Reeb compo-

nents corresponding to any two vertices are a mutex pair. A
mutex pair formed by two adjacent Reeb components is sep-
arated by the cuts between the two Reeb components.
Next, we extend the definitions of Morse path and mutex pair

by introducing approximation.
Definition 5 ( -Morse Path): Given a network and a

Morse function , two nodes and with equal Morse
function values have a -Morse path between them if the
path contains two intermediate nodes and such that:
1) ; 2) there exists a Morse path between and
; and 3) and .
Definition 6 ( -Mutex Pair): Given a network and a Morse

function , two nodes and with the same Morse function
values are called a -mutex pair, denoted by , if there
exists no -Morse path between them.
Definition 6 allows a small part of nonconvex subregions to

be merged finally. Overall, and can be considered as two
parameters allowing the network operator to control the level
of convexity of generated network segments. As such, our al-
gorithm is to generate a set of -convex regions. That
is, CONSEL ensures a bound for the regions' deviation from
convexity.

III. CONSEL ALGORITHM

In this section, we present the implementation details of the
segmentation algorithm. It is noted that even in a 2-D domain,
computing a minimum number of convex components for a
polygon with holes is NP-hard [20]. We therefore do not pursue
an optimal convex segmentation. Instead, our goal is to provide
a simple and practical algorithm that can be performed in a dis-
tributed way.

A. Establishing the Morse Function

In the first step, we randomly choose nodes roughly on
the outer boundary of the network. We use a technique sim-
ilar to the one in [17]: An arbitrary node floods the network
to find the farthest node to . Thereafter, floods the net-
work to find the farthest to itself. Then, is the node that
has the maximum sum of the square roots of the hop counts
from the nodes and . This process continues until nodes

are obtained on the outer boundary. Note that
this selection phase works well for both 2-D/3-D networks.
Next, each of the nodes on the boundary floods the net-

work. The goal of the flooding operations is twofold. First, after
a flooded message from reaches a node records the parent
from which it receives the message, as well as the hop count
to the node . By doing so, the node has the knowledge of
the Morse function value corresponding to

. Second, the flooding allows us to construct the
Reeb graph in a distributed way, as described in Section III-B.
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B. Constructing the Reeb Graph

The key to constructing a Reeb graph is to identify the Reeb
components and select a Reeb landmark node (or Reeb land-
mark) for each of them, representing a Reeb vertex. To this end,
each node will be assigned a Reeb component ID, which is equal
to the ID of its landmark node. (When no confusion occurs, we
use the ID to refer to a node.) In addition, each Reeb landmark
also maintains a set of Reeb edges, connecting to the landmarks
of neighboring Reeb components.
In the construction of the Reeb graph, we will often use two

primitive routines.
L-Component Landmark Election: The nodes in each L-com-

ponent elect a leader, called the L-component's landmark. To do
so, each node in the L-component declares itself to be a land-
mark with a predefined probability and broadcast to its neigh-
bors. If a node does not select itself to be a landmark, and does
not receive any broadcast message within a predefined period
of time, it declares itself to be a landmark with the same prob-
ability again. This process continues until each node receives a
broadcast message. When multiple nodes in the same compo-
nent compete to be a landmark, the node with a larger ID will
prevail. In the end, each L-component will have elected a land-
mark, whose ID is recorded by each node in this L-component.
Neighboring L-Components Discovery: Recall that given an

L-component , its children in the th level constitute
a children set of . Likewise, the parent nodes of an L-com-
ponent's in the th level constitute 's parent set. An
L-component landmark floods its component, asking all nodes
to contact their neighbors in a specified neighboring level. Those
neighbors return their own L-component IDs to the requesting
nodes, which in turn report the collected L-component IDs to .
In the beginning, an L-component in the first level set con-

stitutes a (temporary) Reeb component. Suppose at the current
stage, a Reeb component has elected a Reeb landmark, and one
of its L-components at the maximum level , has a children
set . Through the neighboring L-components discovery
routine, and (more precisely their landmark nodes)
may find themselves in one of the following situations.
1) (Extend event) has only one neighboring L-component

in , and has only one neighboring L-compo-
nent in its parent set.

2) (Split event) has more than one neighboring L-compo-
nents in , which all have only one parent set.

3) (Merge event) has only one neighboring L-component
in , and has more than one neighboring L-com-
ponents in its parent set.

Fig. 5(a) shows an example of the first case, where there are
two L-components, whose nodes have Reeb component ID
and . The two L-components each have a single neighboring
L-component, led by landmarks and , respectively, in the
next level. Thus, the nodes in the L-components led by and

will set their Reeb component ID to that of their parents (i.e.,
either or ).
Fig. 5(b) shows an example of the second case, where the

L-component led by landmark has two neighboring L-com-
ponents in the next level, led by landmark nodes and ,
respectively. Thus, two new Reeb components, represented by

and , respectively, are generated. Also, the edges

Fig. 5. Local Reeb graph. (a) Extend event. (b) Split event. (c) Merge event.

and are generated and recorded by the three end nodes
, and .

Fig. 5(c) shows an example of the third case, where the
L-components led by landmarks and have the same
neighboring L-component in the next level. Thus, a new Reeb
component, represented by is generated. Also, the edges

and are generated and recorded by the three
end nodes.
To guarantee a bound on an L-component's deviation from

convexity, the condition of should be satisfied,
as we discussed in Section II-B. Otherwise, an L-component
should be partitioned. Specifically, we identify two nodes, say
and , that have the longest path length in it, and the nodes

closer to than to form a region, and the remaining nodes
form another region. The condition will be examined again for
each region until the convexity condition is satisfied.
Finally, all Reeb landmarks send their local topologies back

to the origin , following 's flooding tree. After this phase,
the origin has the full picture of the Reeb graph. Fig. 6(a) and
(b) shows the result of the Reeb graph after the flooding for a
Morse function. In Fig. 6(a), the nodes marked with the same
color are in the same region, corresponding to a vertex in Reeb
graph.
It is noted that we have randomly choosen nodes as origin

nodes. Therefore, besides the Reeb graph shown in Fig. 6(b),
there are additional Reeb graphs obtained in a similar way.

C. Identifying Mutex Pairs and Coarse Segmentation

Although a Reeb graph is defined as a undirected graph, each
of its edges can actually be assigned a direction following the
generation order of Reeb vertices. Therefore, we can say that a
Reeb vertex is the ancestor of another Reeb vertex if and only
if there is a directed path between them in the Reeb graph.
Mutex pairs are identified with the following observation:

If two Reeb vertices are not in an ancestor–descendant rela-
tionship, then their corresponding Reeb components (and Reeb
landmarks) form a mutex pair. This is because if two Reeb com-
ponents are not in such a relationship, then any path between
them must pass a common ancestor Reeb component, which
makes the path not -straight. For example, in Fig. 2, and

are a mutex pair, but and are not. At the same time,
the cuts between the adjacent Reeb vertices can separate these
mutex pairs.
As introduced earlier, all nodes in the same Reeb compo-

nent should have recorded their Reeb landmark's ID. Since
there are origin nodes, there are Reeb graphs constructed.
As a result, each node records a set of Reeb landmark
IDs. In Fig. 6(a), , and there are four Reeb vertices
in each Reeb graph, corresponding to 32 Reeb landmarks.
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Fig. 6. Steps of the CONSEL algorithm. (a), (b) Reeb graph construction. (c) Coarse segmentation layout. (d) Merging result. The final refined result is in Fig. 2(c).

Here, each node maintains a set of eight Reeb landmark IDs
.

The basic idea of coarse segmentation is that any pair of
nodes with a different set of Reeb landmark IDs should be in
different regions. Taking the network in Fig. 6 as an example,
assume the Reeb landmarks are . Each of them
performs flooding with its own ID to represent a region, de-
noted by , as well as its set of eight Reeb
landmark IDs. Hereinafter, is called a representative of a re-
gion if . When a node receives a flooded
message, it compares the received set of eight Reeb landmark
IDs to its own set of Reeb landmark IDs. When they are dif-
ferent, or when has already had a region ID
discards the message. Otherwise, updates its region ID as

and then forwards the message to all its
neighbors.
Not all the 32 Reeb landmarks will become regional repre-

sentatives because some of them may have the same set of land-
mark IDs. In addition, some regions may find no representative
since they may not contain a Reeb landmark. To address this
problem, each of the remaining nodes, say node , that still
have not been assigned a region ID will asynchronously declare
itself to be a representative, and then broadcast to all its neigh-
bors that have the same set of landmark IDs. When a node
receives this message, it again compares and .
Only when , the node updates its region
ID as and forwards this message containing

.
In the end, every node has a region ID, and each region has

a representative, which maintains the information of the Reeb
landmark IDs as well as the Reeb graphs. All regions are
the result of the coarse segmentation of the sensor network.
Fig. 6(c) shows a result of coarse segmentation of the network
where 65 subregions are generated.

D. Merging Regions
The cuts induced from the Morse function will often generate

too many regions. For instance, as many as 65 regions are gen-
erated in Fig. 6(c). For the purpose of convex segmentation, we
only need to select some cuts to satisfy all mutex pairs.
The process of cuts selection is called merging regions. Each

representative node in the region maintains a landmark ID list.
The representative node, say , sends a message, containing
this landmark list , to another represen-
tative node, say , of one neighboring region. If does not

find any mutex pair in the two landmark list, it replies a positive
message to to allow the merging of and .
The merging process is simple: broadcasts a message to ask
all nodes in its own region to update their region IDs, that is,

. In addition, will update its landmark list
to include 's landmark list. This process will continue until no
more neighboring regions can be merged. The result of this step
is shown in Fig. 6(d), where eight regions are finally generated.

E. Refinement
Generally, the set of a network's mutex pairs can be used

to generate strictly convex regions. As we target approximate
convex segmentation, we can generate significantly fewer par-
titions by ignoring mutex pairs that lead to small concavities.
To do so, we exploit the definition of -mutex pair, intro-

duced in Section II-C. Based on the coarse segmentation re-
sult [Fig. 6(d)], two regions that are not a -mutex pair can be
merged.
This process works as follows. Each representative node

first finds all mutex pairs with its neighboring region. Without
loss of generality, we assume and are amutex
pair. If there exist two cuts, say and , in such that

, and , the
regions and determine whether a -mutex pair
exists. Thus, the two cuts and perform flooding within the
regions and , so that the remaining nodes have
the information of its hop distance to the cuts.
Each node with a landmark ID then

checks its hop distance to the cut . A negative message
is then replied to the representative node when its hop
distance is greater than . If both and do not receive any
negative reply, no -mutex pair exists. In this case, the node no-
tifies the node that these two regions can be merged. That is,
all nodes in the region of will update their region ID to

. This processwill continue until nomore neighboring re-
gions can bemerged. Fig. 2(c) shows the refined result. Note that
each of the obtained subnetworks is an -convex region.

IV. DISCUSSION

A. Time Complexity and Message Complexity
Time and message complexity are important factors for an

efficient segmentation algorithm. Let be the total number of
nodes in the network, and the number of regions generated
by the CONSEL algorithm. For simplicity, we assume that all
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the nodes are roughly uniformly distributed over the sensing
area. We consider two cases in 2-D (for 3-D, the proof is quite
similar): If the sensor area is like a circle or square, the diameter
is assumed to be , otherwise .
Theorem 1: The time complexity of CONSEL is ,

where is the network size.
Proof: We only prove this theorem in a 2-D space for sim-

plicity; for the 3-D case, the proof is very similar. First, the
origin nodes on the network boundary are found via global

flooding. This step introduces a time complexity of
(or for a network with a diameter). Second, to
construct the Reeb graph, the set of nodes on perform
landmark selection. Assuming a diameter, the number
of nodes on is (for a di-
ameter, the number is ). In this case, this process on results
in a time complexity of (or for a diameter)
since the nodes only forward the message containing the largest
node ID. The total time complexity of constructing the Reeb
graph is thus (for a network with
a diameter, the time complexity is

), after all landmark nodes inform their local simplified
topology graphs to the origin nodes.
The step of coarse segmentation can be done in a distributed

way—the flooding is limited within regions. We consider the
worst case where the number of nodes in each region is compa-
rable to the number of sensor nodes in the whole network. That
is, there are nodes in each regions. Since this process
is similar to the landmark selection, its time complexity is

[22]. Next, for the procedure of merging regions, since
the neighboring representative nodes will communicate with
each other, the time complexity is the diameter of regions, that
is (or for a diameter ).
Finally, in the step of refinement, the cuts perform flooding

within the regions, which has a time complexity of (or
for the worst case). Then, the reply messages traveling

from nodes to the representative node lead to a time complexity
of (or for the worst case). Overall, the time com-
plexity of CONSEL is .
Theorem 2: CONSEL has a message complexity of .
Proof: For brevity, we focus on the 2-D space again. First,

the global flooding operations are performed to find the origin
nodes, introducing a message complexity of . Second,
constructing the Reeb graph requires a process similar to the
landmark selection. Recall that on , there exist
nodes (or for the worst case), each of which randomly de-
clares itself to be a landmark with a given probability. For sim-
plicity of analysis, this probability is set to where
is a constant. As such, only nodes perform flooding within

, which incurs a few scoped flooding operations. Ac-
cordingly, the cost of local flooding on is at most
(or for the worst case). Since the diameter is (i.e.,

) (or ), the message cost is . It is
noted that for a network with a diameter , there only exist

nodes on . In this case, the message cost is still
. Third, in the step of coarse segmentation, the flooding

is limited within regions, not over the whole network, resulting
in a message complexity of . Finally, during the refine-
ment, the cuts perform flooding within the regions, which also
introduces a message complexity of . Overall, the mes-
sage complexity of CONSEL is .

Fig. 7. Example 3-D network with an internal hole with 2094 nodes and av-
erage degree is 36.17. CONSEL generates 11 convex regions where the poor
visualization is due to the display limitation of 3-D objects. (a) Original net-
work. (b) Segmentation result.

Fig. 8. Very sparse sensor network deployed in an L-shape area.

Theorem 2 implies that while our algorithm always uses
flooding operations to collect necessary information in each
step, the communication cost will not increase too much since
we limit the flooding within local areas as much as possible.

B. Special Cases for Segmentation
While the segmentation algorithm requires no boundary in-

formation in most cases, in some 3-D cases, rough network
boundaries may have to be known when internal holes exist.
Fig. 7 shows an example where there exist two boundary sur-
faces (with an internal hole) in a 3-D network.
It can be seen that when the flooded message from the origin

node reaches a new boundary surface, a new vertex should be
generated in the Reeb graph. To achieve rough boundary iden-
tification, existing solutions such as the one in [13] can be used.
As a result, each boundary surface is assigned a surface ID. To
construct the Reeb graph, new vertices are inserted when a new
boundary surface is met during the origins' flooding process.
The rest of the steps are similar, and thus coarse segmentation
can still be generated, followed by the merging and refinement
steps. The result is shown in Fig. 7(b).

C. Node Density Requirement of CONSEL
CONSEL only requires a network to be connected, so in prin-

ciple it works correctly for both dense and sparse networks.
Generally, the denser the network nodes, the better the segmen-
tation performance. For a very sparse network, however, the
algorithm may produce many small and less meaningful seg-
ments. This is because in this case, the connectivity of the net-
work nodes cannot well represent the geometric shape of the
network. Fig. 8 shows an example of a sensor network deployed
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Fig. 9. Comparisons on 2-D networks. Columns (from left to right): results
using CONSEL, results of [32], and results of the CONVEX algorithm [27].
Rows: 1) Smile shape, 3045 nodes, avg. deg. 10.09. 2) single-hole shape,
3700 nodes, avg. deg .13.1. 3) Cactus shape, 2172 nodes, avg. deg. 8.76.
4) Airplane shape, 1878, avg. deg. 8.65. 5) Star shape, 3893, avg. deg. 8.90.

in an L-shaped area. Due to the sparse nodes and links, the net-
work does not quite exhibit an L shape. The main difficulty for
CONSEL arises from the fact that the network's connections
may not determine a deterministic shape of the network. In other
words, given very limited connection information, CONSEL
cannot precisely infer the shape of the network, due to the lack of
sufficient constraints on the nodes' positions. The reason behind
this is explained by the theory of rigid graphs [4], which studies
the conditions for a graph to have a unique embedding onto the
plane. Because of this theoretical restriction, there exists no seg-
mentation algorithm that works well for cases like this. There-
fore, the consequence of oversegmentation must be taken into
account before one chooses any connectivity-based algorithms,
including CONSEL, for a very sparse network whose shape is
hard to define geometrically.

V. SIMULATIONS

We have conducted a series of simulations experiments on
various network topologies to compare CONSEL with the al-
gorithms in [27] and [32]. We evaluate how the performance

Fig. 10. 3-D performance of CONSEL. (a) 3-D 8 shape, 3486 nodes, avg. deg.
37.16. (b) Chicago airport terminal-2 shape, 2502 nodes, avg. deg. 31.09. (c) 3-D
spiral shape, 3464 nodes, avg. deg. 31.07. (d) 3-D ring-ball shape, 3790 nodes,
avg. deg. 33.85. (e) 3-D single-hole shape, 5681 nodes, avg. deg. 32.28. (f) 3-D
S shape, 2244 nodes, avg. deg. 31.38. (g) 3-D headset shape, 3260, avg. deg.
31.5. (h) 3-D cross-ring shape, 2416, avg. deg. 25.4. (i) 3-D footprint shape,
3996, avg. deg. 33.8.

of CONSEL is affected by factors such as node density, radio
model, node distribution, etc. The default settings are as fol-
lows. Sensors are deployed with a perturbed grid model where
the grid has a width around 4.5 and the radio range is around
6.8. The networks have an average node degree of around 10
for 2-D, and 30 for 3-D. We set the parameter to be 5 hops and
to be 2 hops.

A. Evaluation on 2-D Networks

We first compare CONSEL to two state-of-the-art algorithms
in [27] and [32] designed for 2-D networks. Fig. 9 shows the re-
sults. Since these algorithms rely on the knowledge of network
boundaries, it can be seen that they produce significantly more
regions. Also, the results by [27] and [32] are quite sensitive to
boundary noise (or boundary deformation), as we explained in
Section I. In contrast, CONSEL provides a bound of convexity
deviation of regions, resulting in appropriate segmentation re-
sults (smaller number of segmentation regions).

B. Evaluation on 3-D Networks

Fig. 10 shows the segmentation results of CONSEL for sev-
eral 3-D networks. We do not include a comparison to the only
previous algorithm with limited 3-D segmentation capability
in [31] because its reliance on bottleneck identification pre-
vents it from working for most networks in Fig. 10, except
for Fig. 10(d). We can see that CONSEL works well for 3-D
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Fig. 11. Segmentation results with varying node densities. (a) 1663 nodes, avg.
degg 6.86. (b) 1723 nodes, avg. deg. 7.23. (c) 3 059 nodes, avg. deg. 12.77.
(d) 1774 nodes, avg. deg. 18.4. (e) 2612 nodes, avg. deg. 26.7. (f) 4707 nodes,
avg. deg. 50.0.

networks, always yielding proper segmentation results. For ex-
ample, in the 8-shape network, six convex regions are generated,
reflecting the impact of the two holes in the network topology.

C. Sensitivity to Node Density
Fig. 11 shows the results of networks with a variety of node

densities. Theoretically, the higher the node density, the closer
the network to a continuous domain. This means that hop count
serves as a good approximation of Euclidian distance. First,
the edge between two regions is smoother (closer to a straight
line) when the node density is higher. Second, we observe in
Fig. 11(d) an increased number of regions. The reason is that
when the average degree is too low, smaller regions of few
sensor nodes can be produced due to the variation of node
connectivity.

D. Sensitivity to Radio Model
We run simulations under a different radio model:

Quasi-UDG (Quasi-UBG for 3-D networks) radio model, with
a parameter . There exists a link between two nodes if the
Euclidian distance is less than where is the com-
munication range. If the distance is between and ,
the link exists with a probability of . No link exists
when the distance is greater than . We vary the
value while adjusting to make the average node degree in the
networks nearly the same.
We show the segmentation results under the Quasi-

UDB/UBG model by varying the values in Fig. 12. We can
observe degraded performance of cuts (shared edges/surfaces
between two regions) under this model. Nonetheless, the
network is still partitioned into several approximately convex
regions by CONSEL.
A second radio model that we examine is the log-normal

model. For two nodes and , the probability of a link ex-
isting between them is based on a log-normal shadowing radio
model [7]

Fig. 12. Segmentation results under the Quasi-UDG/UBG radio model.
(a) . (b) . (c) . (d) . (e) . (f) .

Fig. 13. Segmentation results under the log-normal radio model. (a) .
(b) . (c) . (d) . (e) . (f) .

where is the normalized distance between nodes and
is a constant, is the standard deviation

of shadowing, and is the pathless exponent. Empirically,
may vary between 0 and 6 [7]. An important feature of the log-
normal radio model is that the link between two nodes whose
normalized distance is less than 1 may not exist, and the link
between nodes whose normalized distance is larger than 1 exists
with a nonzero probability.
Fig. 13 shows the segmentation results for various values.

We observe degraded performance with a larger . The reason
is similar: A node may find a neighbor far away from itself.
More severely, when is large, say in Fig. 13(f), only
four regions are generated finally. We conclude that CONSEL
algorithm works best for a moderate value of (say, ) in
the log-normal radio model.
The third radio model used in our simulation is the proba-

bilistic connectivity model, where we start with the unit disk
graph model and remove each edge with probability .
As can be seen from Fig. 14, CONSEL can generate appro-
priate segmentation results, reflecting its robustness to this radio
model.
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Fig. 14. Segmentation results under the probabilistic connectivity model. (a)
. (b) . (c) . (d) . (e) . (f) .

Fig. 15. (a) 3388 nodes, avg. deg. 11.5. (b) 2859 nodes, avg. deg. 29.6. (c) 2585
nodes, avg. deg. 31.0.

E. Sensitivity to Node Distribution
We next consider another sensor placement scheme: uni-

form random distribution. This distribution, compared to the
perturbed grid model, generates more randomness in node
deployment. We show the results in Fig. 15. With the increased
randomness, the segmentation results show no significant
difference compared to their counterparts in Figs. 9 and 10. De-
spite the higher variability of the node distribution, CONSEL
partitions the network according to the Reeb graph and mutex
pairs, which makes itself robust to the variation of node
connectivity.
We next examine CONSEL under a nonuniform node distri-

bution. Fig. 16 shows the results of CONSEL where 70% of all
nodes are distributed in the right half of the sensor area. This
nonuniform distribution leads to more variable node connec-
tivity. Nonetheless, there is no significant difference compared
to the results from the previous experiments. The reason is that
the Morse function used in CONSEL utilizes no neighborhood
density information.

F. Sensitivity to the Parameter
Recall that and can be considered as two parameters

allowing the algorithm to control the level of convexity of
generated regions. Since they have similar influence on the
convexity deviation, we study the algorithm's sensitivity to
the parameter . Fig. 17 depicts the segmentation results
with varying values. It is found that, with an increased
value, more and more approximately convex regions are

grouped together. Recall that each of the obtained regions

Fig. 16. (a) 4284 nodes, avg. deg. 15.85. (b) 3070 nodes, avg. deg. 17.7.
(c) 1314 nodes, avg. deg. 16.2.

Fig. 17. Segmentation results with varying values. The first row shows a
network with many small boundary deformations. It contains 2878 sensor nodes
and its average degree is 10.52. (a) . (b) . (c) . (d) .
(e) . (f) .

TABLE I
MESSAGE COST OF CONSEL FOR VARIOUS NETWORKS

is an -convex region. This parameter also provides a
flexible tool to balance the number of generated regions and
their convexity.

G. Message Cost
We next evaluate the message cost of CONSEL for different

networks, measured by the total number of transmitted mes-
sages; see Table I. In this table, the procedures of establishing
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the Morse functions and constructing the Reeb Graph are
labeled “Step 1,” whose message cost arises from the global
flooding from the origin nodes. Also, the remaining proce-
dures of CONSEL are labeled “Step 2,” whose message cost is
caused by the operations of grouping sensor nodes. We make
several observations. First, the cost of Step 1 dominates the
cost. That is, the flooding operations initiated by the origin
nodes account for the majority of traffic by CONSEL. The
reason is that this step not only involves global network-wide
flooding operations, but also requires many local flooding
operations that have to be done for every set of . These
are needed to find dominating landmark nodes in order to figure
out the local simplified network topology and to bound the
level of concavity. Second, CONSEL is scalable in terms of
message cost, confirming the theoretical result in Theorem 2.
Take rows 1–4 in Table I as an example. With increased net-
work size, the traffic cost is increased, roughly in proportion to
the network size. This linear trend makes CONSEL potentially
applicable to a wide range of scenarios in practice. Third,
we cannot see significant difference of cost between 2-D and
3-D networks. We conclude that the message complexity of
CONSEL is not correlated to the dimension, but rather depends
on the network size.

VI. APPLICATIONS

Network segmentation enables traditional algorithms ori-
ented to simple network geometry to run efficiently for complex
and irregular environments. In this section, we study how it
benefits two important applications: geographic routing and
connectivity-based localization.

A. Geographic Routing

Geographic routing is a routing paradigm in which a sensor
node greedily forwards packets to its neighbor closest to the
destination. It works well when the shape of a sensor field is
approximately convex, where the sought route should approx-
imately follow a straight line. This assumption, however, does
not hold for geometrically complex environments. In the pres-
ence of holes or concave corners, the straight-line course of
greedy forwarding can be seriously disrupted, leading to very
poor performance [27], [32].
With network segmentation, we can circumvent the above

problem by running geographic routing within each region.
After the segmentation, each node obtains a unique regional
ID and knows the ID of its Reeb component landmark node, or
its Reeb landmark. In addition, in each region, using existing
coordinate assignment algorithms such as [17] and [24], we
can assign a set of virtual coordinates to each node. At the
same time, the Reeb component landmark nodes can help with
interregion routing. To that end, each Reeb landmark floods
the global network to establish a shortest path tree, allowing
every other node in the network to reach it via shortest path.
The segmentation-assisted geographic routing is simple. When
a packet is requested to route from a source node to a destina-
tion node is first greedily routed to 's Reeb landmark using
the virtual coordinates. Then, the packet is routed to 's Reeb
landmark via shortest path. Finally, the packet is routed to ,
again using greedy forwarding based on the virtual coordinates.

Fig. 18. (a) Routing successful rate and (b) transmission stretch.

We carry out simulations on various networks and the results
of routing successful rate and transmission stretch are shown in
Fig. 18. We also implement the algorithm in [27], and its seg-
mentation results are labeled “Convex partition” (or CONVEX
for short). First, in most cases, direct greedy routing without
segmentation, labeled “Physical location,” has a routing suc-
cessful rate below 70%. With segmentation, the successful
rate is significantly higher, coming close to 100%. Second,
Fig. 18(b) shows the results of transmission stretch, defined
as the ratio of the routing path length to the shortest-path hop
count between the nodes. The CONSEL protocol outperforms
CONVEX, resulting in a 7%–12% improvement. The reason
is that for 2-D networks, CONSEL generates fewer regions
compared to CONVEX, potentially leading to a shorter routing
path. Third, for 3-D networks, clearly the results with CONSEL
segmentation is much better than that without segmentation,
with a 50% performance improvement in successful ratio.
Finally, for 2-D/3-D networks, the stretch of greedy routing
with CONSEL segmentation is only around 1.7. That is, the
traditional algorithm—greedy routing designed for a simple
network shape—is successfully adapted to complex 2-D/3-D
environments with the help of CONSEL.

B. Connectivity-Based Localization

Localization is crucial for many applications, such as po-
sition-aware data dissemination and processing. Connectivity-
based localization aims to produce a relative coordinate system
for a network without using ranging techniques (for measuring
physical distance between nodes). In this approach, the phys-
ical distance between nodes is estimated with the hop count of
their shortest path, relying on the assumption that the hop dis-
tance correlates well with Euclidean distance. However, when
the network topology is irregular, the shortest path may be sig-
nificantly bent. As a result, the hop distance between two nodes
may deviate vastly from the Euclidean distance.
With shape segmentation, we only need to apply a traditional

localization algorithm to individual regions, thereby avoiding
the above problem. The segmentation-assisted localization al-
gorithm is a simple extension of existing algorithms. First, the
network is segmented into a set of regions. Second, within each
region, a traditional multilateraion algorithm (such as the atomic
trilateration method in [26]) is applied. The algorithm computes
a node's coordinates using distance measurements to three/four
reference points. Third, we combine the coordinates of all the
regions into a global map. In this step, for every pair of adjacent
regions, there are some nodes located on their shared segment
lines, and these nodes are assigned two virtual coordinates. We
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Fig. 19. Localization results. Columns (from left to right): 1) 2-D/3-D localiza-
tion results with CONSEL; 2) 2-D localization results with the CONVEX [27]
algorithm; 3-D localization results using CATL [28]; 3) 2-D/3-D localization
results using pure multilateraion without segmentation. Rows: 1) Single-hole
shape; 2) Cactus shape; 3) Chicago airport terminal-2 shape; 4) 3-D-8 shape.
(a) LE is 0.578. (b) LE is 1.01. (c) LE is 2.5. (d) LE is 0.58. (e) LE is 0.7. (f) LE
is 1.78. (d) LE is 0.84. (e) LE is 2.93. (f) LE is 3.56. (g) LE is 1.15. (h) LE is
2.01. (i) LE is 6.66.

perform a linear transformation on these virtual coordinates. Fi-
nally, the use of spring-mass algorithm [17] is applied to refine
nodes' coordinates with respect to their neighbor connections.
We run simulations using segmentation results from

CONSEL and CONVEX [27]. For comparison, we
implement two additional algorithms. First, a pure multilat-
eraion without segmentation is evaluated. Second, CATL [28],
a state-of-the-art localization algorithm with 3-D capability, is
also evaluated. The key idea of CATL is to identify notch nodes
where the hop count of the shortest path between two nodes
deviates from the true Euclidean distance. CATL then uses
an iterative notch-avoiding multilateration scheme to localize
the network. In addition to shape recovery, we measure the
localization error (LE), defined as the ratio of the Euclidean
distance between the estimated location and its true location
to the communication range.
Fig. 19 shows the localization results. First, for the 2-D

network, we see a 40% improvement in localization accuracy

with the CONSEL segmentation, compared to the CONVEX
scheme, because CONSEL generates fewer convex regions,
thereby avoiding the error propagation in CONVEX. Second,
the accuracy of pure multilateraion is too poor to be acceptable
for complex networks containing holes or concave regions.
Third, for the 3-D network, an up to 50% improvement in
localization accuracy can be attained using our scheme, com-
pared with CATL [28]. The reason is that CATL suffers from
the location estimation from a long distance when the node
is far away from the anchors. More specifically, after each
iteration, newly localized nodes will serve as beacon nodes
and flood their locations through the network. The localization
errors after each round will be accumulated. In addition, the
performance of CATL highly depends on the choice of beacon
nodes. In contrast, the traditional localization algorithm applied
within each region avoids this problem. Overall, the segmenta-
tion-assisted localization can recover the network layout with
small errors.

VII. CONCLUSION

We have presented CONSEL, a distributed and scalable al-
gorithm for segmenting 2-D/3-D sensor networks. Using con-
nectivity information only, this algorithm is the first solution
with both 2-D and 3-D segmentation capability. In addition,
the convexity deviation of network regions after segmentation
can be bounded. We have demonstrated the effectiveness of
CONSEL through extensive simulations. Moreover, we show
how segmentation benefits existing applications such as geo-
graphic routing and connectivity-based localization.
In the future, in addition to routing and localization, we

will study its uses in other applications such as data pro-
cessing [8], [9], [11], skeleton extraction [2], [10], and
especially for 3-D sensor networks, which have attracted recent
attention of many researchers. We will also seek more efficient
tools such as amorphous computing [21] and spatial com-
puting [29] to conduct simulations of our algorithm. Finally,
we plan to implement our algorithm on sensor network testbeds
to study its efficiency in more realistic environments.
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