
ShadowVoD: Performance Evaluation as a Capability
in Production P2P-CDN Hybrid VoD Networks

Hanzi Mao, Chen Tian, Jingdong Sun, Junhua Yan, Weimin Wu, and Benxiong Huang
Huazhong University of Science and Technology

Email: {hanzimao, tianchen, sunjd, junhuayan, wuwm, huangbx}@ hust.edu.cn

Abstract—Video-on-Demand (VoD) services have achieved
great success recently. Most such streaming systems are P2P-CDN
hybrid systems. To ensure reliable performance, the most efficient
way is to subject those VoD streaming networks to large-scale,
realistic performance evaluations. Our previous ShadowStream
system is a production Internet live streaming network with
performance evaluation as a built-in capability. In this paper,
we extend the same idea into the VoD services. There exists
significant difference between live and VoD, hence ShadowStream
cannot be directly used in VoD context. Firstly, clients in P2P-
VoD service are not synchronized in viewing progress; secondly,
in VoD there exists interactive operations (e.g., pause and drag);
thirdly, the different playpoints of users also bring difficulty
to replacing departed real clients. In this paper, we solve all
above mentioned challenges. We implement ShadowVoD and
demonstrate its benefits through extensive evaluations.

I. INTRODUCTION

In recent years, Video-on-demand (VoD) service has be-
come the most popular Internet streaming application. With a
VoD service, users can view previously recorded video content
at a different time [1]. It is believed that the VoD traffic
will triple by 2015, which equivalents to 3 billion DVDs per
month [2]. Most such streaming systems are P2P-CDN hybrid
systems; it becomes more and more important to guarantee
that VoD service networks can provide reliable performance.

To ensure reliable performance, the most efficient way is to
subject those VoD streaming networks to large-scale, realistic
performance evaluations. Traditional testing technologies, such
as lab/testbed testing [7], [8], fail to obtain reliable testing
results due to the lack of both scale and realistic features. For
example, it is hard for a testbed to capture the heterogeneous
network features such as PowerBoost [9] in cable networks,
large hidden buffers in access networks [10], and shared bot-
tlenecks at ISP peering or enterprise ingress/egress links [12].
It is clear that only in large-scale, realistic environment, the
capacity of VoD networks to handle increasingly complex
Internet and large number of users can be fully tested.

In ShadowStream [13], we introduces live testing, where
performance evaluation is a built-in capability in production
Internet live streaming networks: a production streaming net-
work itself can be a unique testing system with both scale
and realism. Two major challenges are solved. The first is
protection: since real viewers are used in testing, live testing
needs to protect the real viewers from possible performance
failures of experimental systems; the second is orchestration,
where desired experimental scenarios (e.g., flash-crowd) can
be orchestrated by adding real viewers.

In this paper, we extend the live testing capacity to VoD
systems, which is called ShadowVoD. The new live testing
system built in production Internet VoD streaming networks,
with the major objective of obtaining accurate testing results,
should also guarantee both protection and orchestration.

There exists different playback and interaction pattern
between live and VoD systems; as a result, the testing system
designed for live streaming can not be directly applied to VoD
networks. To be more specific, we shall address three key
challenges that are not presented in live streaming.

Firstly, clients in P2P-VoD service are not synchronized
in viewing progress as those in live streaming systems [3].
In live, the newest video piece is constrained by the current
time; viewers’ playpoints (currently viewing video piece)
are close to each other, and can not be lag from real time
too much. While in VoD, due to the different start time of
clients, the playpoints are different; also, due to the content
prefetch characteristic of VoD, it is necessary for clients to
store previously watched video pieces to help each other.
Therefore, the content play buffer (which is the key data
structure of a streaming client software), should be redesigned
for VoD.

Secondly, another major difference between VoD and live
streaming is that in VoD there are interactive operations. In
live, viewers’ interactions are limited; they are only permitted
to start or stop watching a streaming. Differently, in VoD users
can pause and drag at any time they want. We should guarantee
that real viewers’ quality of experience is not affected after
the live testing design is implemented. In addition, evaluations
based on real viewers as they naturally pause and drag, may not
always match the expected patterns of developers. It is more
desirable that testing clients’ behavior scenarios of pause and
drag can be created.

Thirdly, the different playpoints of users also bring difficul-
ty to replacing departed real clients. A distributed orchestration
is introduced in ShadowStream where each client locally
chooses to become a replacement candidate or not based on
the possibility distributed by the orchestrator. However, it is
more advisable to select specific users as substitutes of early
departed clients in VoD as we should take their different
playpoints into consideration.

We solve all above mentioned challenges in this paper. We
implement ShadowVoD and demonstrate its benefits through
extensive evaluations. The rest of the paper is organized as
follows: In Section II we present how ShadowStream achieves
the PCE scheme in live. Section III contains the client design
and implementation in ShadowVoD. Behavior emulation of

2014 IEEE International Conference on Ubiquitous Intelligence and Computing/International Conference on Autonomic and Trusted

Computing/International Conference on Scalable Computing and Communications and Its Associated Workshops

978-1-4799-7646-1/14 $31.00 © 2014 IEEE

DOI 10.1109/UIC-ATC-ScalCom.2014.77

767

2014 IEEE 11th Intl Conf on Ubiquitous Intelligence & Computing and 2014 IEEE 11th Intl Conf on Autonomic & Trusted

Computing and 2014 IEEE 14th Intl Conf on Scalable Computing and Communications and Its Associated Workshops

978-1-4799-7646-1/14 $31.00 © 2014 IEEE

DOI 10.1109/UIC-ATC-ScalCom.2014.77

767

2014 IEEE 11th Intl Conf on Ubiquitous Intelligence & Computing and 2014 IEEE 11th Intl Conf on Autonomic & Trusted

Computing and 2014 IEEE 14th Intl Conf on Scalable Computing and Communications and Its Associated Workshops

978-1-4799-7646-1/14 $31.00 © 2014 IEEE

DOI 10.1109/UIC-ATC-ScalCom.2014.77

770

2014 IEEE 11th Intl Conf on Ubiquitous Intelligence & Computing and 2014 IEEE 11th Intl Conf on Autonomic & Trusted

Computing and 2014 IEEE 14th Intl Conf on Scalable Computing and Communications and Its Associated Workshops

978-1-4799-7646-1/14 $31.00 © 2014 IEEE

DOI 10.1109/UIC-ATC-ScalCom.2014.77

771

Fig. 1. Streaming machine buffer: (a) at t=100; (b) at t=101. [13]

pause and drag are described in Section IV. We evaluate the
behavior of ShadowVoD on a complete VoD streaming system
we implement. Results are shown in Section V to testify the
practicability of ShadowVoD. Section VI concludes the paper.

II. BACKGROUND

A. Streaming Basics

A key capability to ensure streaming networks providing
reliable performance is to subject them into large-scale, realis-
tic performance evaluations. ShadowStream is a novel Internet
live streaming system that integrates performance evaluation
as an intrinsic capability. It is a hybrid P2P-CDN piece based
streaming system, where a live streaming client downloads and
uploads streaming data in units of pieces. In ShadowStream, a
self-complete set of algorithms to download and upload pieces
is called a streaming machine or a machine for short.

The machine’s play buffer keeps track of pieces that are
already downloaded as well as the pieces that the machine
needs to download. Figure 1 (a) is an example illustrating the
play buffer status at time t = 100 of a client i. The index of
a piece is the time that the piece was produced at the source;
a shaded piece is one that has been downloaded. the right
most piece of play buffer is the most recent piece produced by
the source. We refer to this piece as the sourcepoint. Another
important piece at an instance of time is the next piece to be
delivered to the media player at the client. We refer to it as the
playpoint. For the example in Figure 1 (a), the playpoint is 90.
The playpoint and sourcepoint advance in time. Figure 1 (b)
shows the advancement of the playbuffer from Figure 1 (a).
We see that at the next time t = 101, the playpoint becomes
91, and the sourcepoint becomes 101. If the client is not able
to download any piece during t = 100 to t = 101, then the
machine fails to download piece 91 in time and we say that
the piece is missing.

B. ShadowStream

ShadowStream needs to address two major challenges. The
first is protection: since real viewers are used, live testing
needs to protect the real viewers quality of experience from
the performance failures of experimental systems. The second
is orchestration: live testing needs to orchestrate desired exper-
imental scenarios from production viewers, without disturbing
their quality of experiences.

In the design of ShadowStream, three streaming machine
run concurrently. The current production streaming version is
named production; the streaming machine which downloads
pieces directly from a dedicated CDN resources is called
rCDN; the streaming machine called experiment contains the
experimental algorithms of which we want to make perfor-
mance evaluations.

ShadowStream applies a novel Experiment→Validation→
Repair scheme. The key idea is to handle each downloading
task of a piece in a temporal sequential pattern. To reveal
the true performance of experiment, ShadowStream assigns
the task of downloading a piece first to experiment alone. If
experiment cannot download it by its playpoint, rCDN takes
over the responsibility and try to “repair” by downloading
from CDN. If the repair of rCDN fails, production shall try to
download it as a final protection. We evaluate the performance
of the testing VoD streaming network by the piece missing
ratio of experiment. Fig.2 shows how this scheme works.

���������	

����	�

����

����	�

�����	���

�������

�������

	��
���
�������

����
	�����

����

�������

�������

������

Fig. 2. The Experiment → V alidation → Repair scheme of
ShadowStream.

A streaming hypervisor is introduced to inform streaming
machines of pieces which they should download respectively.
Conceptually the total downloading range spanning from real
playpoint to sourcepoint is divided into three parts by produc-
tion, rCDN and experiment sequentially. Each part is referred
as the task window of corresponding streaming machine. The
playpoint and sourcepoint advance in time along with the
task windows and the piece missed by the right task window
becomes the downloading task of the left one.

To ensure that the failure of experiment is not visible to the
real viewer during our evaluation, we need that the playpoint
of experiment is not the actual viewer visible playpoint. Hence,
we say that the playpoint of an experimental streaming ma-
chine is a virtual playpoint, and the playpoint of a production
streaming machine is a real playpoint.

A ShadowStream client always starts with production
alone. Then at certain computed time, corresponding rCDN
and experiment are notified to join the test to create desired
testing client behavior scenarios. Their state before joining
the test can be considered as missing every piece, the virtual
“arrival” and “departure” of rCDN and experiment are simple
state transition.

III. CLIENT DESIGN AND IMPLEMENTATION

We start with the design and implementation of Shad-
owVoD client and focus on the change of the play buffer
and task window management. The novel PCE scheme is still
implemented in ShadowVoD with a mechanism of flexible
window length of rCDN introduced.

768768771772

Fig. 3. The play buffer of PCE in ShodowVod.

A. Streaming Machine

In ShadowVoD, clients download and upload streaming
data in units of pieces. Each piece is assumed to contain 1-
second of streaming data. Here we introduce the play buffer
to record the status of pieces about whether they have been
downloaded or still need to be downloaded.

Different from live streaming, where the newest piece is
constrained by the current time and can thus be defined as the
sourcepoint, in VoD all movie data is already there, and there
does not exist the sourcepoint anymore. Instead we define the
right most piece of the play buffer as the bufferpoint. Both
the play buffers of production and experiment are divided into
two parts; the left one is called back buffer while the right
one is referred as front buffer. The real playpoint and virtual
playpoint serve as medians to partition the two streaming
machines respectively. We should notice that the piece missing
ratio is collected at the playpoint instead of the left boundary
of back buffer. Fig.3 illustrates the play buffer of the new PCE
layout in ShowdowVoD.

B. PCE Design

We still adopt the PCE scheme in ShadowVoD. When
downloading a piece, the hypervisor will assign this task
following a sequential experiment-rCDN-production scheme.
The downloading task would be assigned to next streaming
machine if the previous one fails, thus testing users’ quality
of experience is guaranteed .

Besides, we propose a new mechanism that the window
length of rCDN is flexible to achieve clients’ pause behavior
emulation. Assuming that we already know the frequency of
actual users’s pause for a certain video; we define the average
of it as X0. And we desire to make evaluations of experiment
based on this video for the average frequency of pause as X1.

• Situation a: If X1 = X0, the behavior of the task
windows of the three streaming machines should be consistent
with the behavior of users, which means once a user pauses
the movie, the task windows stop moving forward while the
downloading of pieces can continue.

• Situation b: If X1 > X0, we have to simulate additional
users’ behavior of pause for experiment and guarantee the
real viewers’ quality of experience at the same time. The
additional pause should behave like actual users’ behavior
including distributions of pause position and pause duration
[15].

• Situation c: If X1 < X0, at certain times, when users
choose to pause, we should let the task window of experiment
continues to move forward while rCDN and production pause
along with users.

The basic idea to achieve this mechanism is this: make the
window length of rCDN flexible. The right boundary of rCDN
(ie. The left boundary of experiment) could be freely shifted.

For the additional frequency (X1−X0) in situation b, we
simulate users’ behavior of pause. After getting the message

Fig. 4. Flexible window length of rCDN.

from the hypervisor, the experiment buffer position freezes. To
shield real users from being affected, production and rCDN
move forward as usual. The trick here is that the hypervisor
would dynamically advance the left boundary of rCDN but
freeze the right boundary. The length of rCDN would be
dynamically reduced as presented in Fig.4 (b) compared with
the initial task window length of all three streaming machines
shown in Fig.4 (a).

For situation c, we choose to let experiment move forward
as usual while the production and rCDN buffer positions
freeze. The hypervisor would dynamically advance the right
boundary of rCDN but freeze the left boundary accordingly.
The length of rCDN would get enlarged. Fig.4 (c) describes
such situation.

The freely shifted right boundary of rCDN makes it
possible to emulate users’ pause behavior based on frequency
different from what real users choose to do. Algorithm details
and other issues will be discussed in Section IV.

C. Task Window Management

In ShadowVoD, task window management is implemented
by a simple streaming hypervisor to notify a streaming ma-
chine about pieces which it should download.

Here, we use two new functions x.getLength() and
x.getPlayTime(). The x.getLength() function is used to get the
length of the downloading task window of each streaming
machine. Specially, for production and experiment the return
values are the length of their front buffers. The x.getPlayTime()
function is used to define the left boundaries of the download-
ing task windows. For production, it is the real playpoint, but
for rCDN and experiment, they are actually virtual playpoints.
We make this change because there does not exist sourcepoint
in VoD anymore. And we can always confirm the playpoint of
production easily, the playpoints of the other two streaming
machines can be identified accordingly. The start time and
returned values of getPlayTime() are listed in TABLE I. The
subscripts l.front and l.back represent the length of front
buffer and back buffer respectively.

TABLE I. RESULTS OF CALLING getPlayTime().

machine start time getPlayTime()

production Viewer arrival playpoint

rCDN Enter testing playpoint+pl.front

experiment Enter testing playpoint+pl.front+clength+el.back

IV. DISTRIBUTED BEHAVIOR EMULATION

A major difference between live and VoD is that users can
choose to pause or drag at any time they want in VoD scenario.
The performance evaluations of VoD networks should be
deliberately designed to consider such interactive operations.

769769772773

A. Pause Emulation

A novel methodology of flexible task window length of
rCDN is proposed to emulate the pause behavior as presented
in Section III. Here we discuss the orchestration and protection
issues.

1) Emulation Orchestration: We employ the orchestrator to
achieve the mechanism to control a large number of real clients
about their emulation behavior. The distributed orchestration is
adopted. Assuming the orchestrator already knows the actual
frequency X0 and the frequency X1 based on which we want
to make evaluations. The orchestrator only needs to embed
these two parameters into keep-alive response messages, and
distributes to all clients who have already joined testing.

When the hypervisor of a testing viewer receives the two
parameters, it compares them firstly. If X1 = X0, when the
hypervisor is informed of users’ pause, it send messages to all
three streaming machines to stop them from moving forward. If
X1 > X0, we arrange the extra frequency as they are uniform
distributed, and their pause duration should follow the the same
distribution with real clients. If X1 < X0, every time a user
choose to pause, the hypervisor has the possibility of X1−X0

X0

to notify production and rCDN to pause along with the user
while the experiment continues moving forward.

Here we introduce several new functions which are sent
from the hypervisor to streaming machines to implement such
orchestration. TABLE II lists these key API functions between
streaming machines and the streaming hypervisor.

p.pause(), c.pause() and e.pause() are called by the hyper-
visor in situation a. For situation b, e.pause(t) and c.reduce(t)
are called. For situation c, p.pause() and c.enlarge() are called.
The pseudo-code for the distributed algorithm is shown in
Fig.5.

2) Protection Issue: The idea that the window length of
rCDN is flexible also brings a key issue. In situation b, the
decrease of the window length of rCDN may affect real view-
ers’ quality of experience because their time for downloading
missing pieces from CDN is reduced. For situation c, if the
window length enlarges too much that the right boundary of
experiment is close to the end of the movie, this user is forced
to quit testing.

To address this issue, we implement a simple distributed
control mechanism. Every certain time, like 5s, the hypervisor
will call the function c.getLength() to get the length of the task
window of rCDN. Once it reduces or enlarges beyond the range
we defined, the user is notified to have an early departure.

To reduce the possibility of early departures, we compute
the recommended value for the initial window length of rCDN.
Given the probability distribution function of pause duration
as f(x) , where x is defined as the pause duration and
f(x) represents the probability accordingly. The mathematical
expectation of x can be represented as E(x) =

∫∞
0

xf(x)d(x).
If X1 > X0, the additional (X1 − X0) simulated pause of
experiemnt will reduce the length of rCDN by an expected
value of (X1 − X0) ·

∫∞
0

xf(x)d(x). This is the minimum
value we recommend for the window length of rCDN.

B. Drag Emulation

Here we still assume that we already know the frequency
that actual users decide to drag and the average of it is defined

Client i, upon receiving X1 and X0 :

01. switch (cmp(X1, X0)) {
02. case X1 = X0 :

03. if (the pause behavior of the user is notified)

04. call p.pause(), c.pause(), e.pause();

05. if (the behavior that the user stops pause is notified)

06. call p.restore(), c.restore(), e.restore();

07. break;

08. case X1 > X0 :

09. k0 = the initial value of the playpoint;

10. l0 = the whole length of the movie;

11. for (k = k0; k < l0; k += l0
X1−X0

)

12. Draw the pause duration t and guarantee that

the set of t obeys given distribution;
13. call c.reduce(t), e.pause(t);
14. break;

15. case X1 < X0 :

16. if (the pause behavior of the user is notified)

17. μ = X0−X1
X0

;

18. if (random()< μ)

19. call p.pause(), c.enlarge();

20. if (the behavior that the user stops pause is notified)

21. call p.restore(), c.restore();

22. break;

Fig. 5. Algorithm with decentralized control for each client i to emulate
pause behavior.

as Y0. We desire to make evaluations based on this video for
the average frequency of drag as Y1.

For drag emulation, we focus on the situation of Y0 = Y1.
In this situation, the behavior of the task windows of the three
streaming machines should be consistent with the behavior
of users. The new playpoint of production after drag should
be the playpoint chosen by the real user. Challenge here is
that if we handle real users’ drag behavior with simplistic
notifications from hypervisor about the playpoint change of
all three streaming machines, production and rCDN will
download pieces to fulfill their empty task windows. Such
downloading behavior will cause unnecessary interference to
experiment as the downloading capability of the network is
limited and the accuracy of testing will get impaired.

The approach proposed here is this: when the drag behavior
of a user is notified, the hypervisor will inform the production
of its new playpoint and the client can continue viewing the
video after the drag delay. The rCDN and experiment are
controlled to depart the testing locally. They will rejoin the
testing channel after the buffer time�t which is notified by the
hypervisor. Two observations should be guaranteed when they
rejoin the test: (1) pieces at the range for experiment should be
empty; and (2) pieces for production and rCDN should be full.
Production and rCDN can fulfill their task windows directly
from the dedicated CDN during the buffer time �t.

Thus the total testing time for a certain client i changes
from (tleave,i−tstart,i) to (tleave,i−

∑m
1 �ti−tstart,i) , where

tleave,i and tstart,i represent the departure time and start time
of client i respectively and �ti means the defined buffer time
for client i. The formula to compute the piece missing ratio
of experiment should be changed accordingly.

When the drag frequency of actual users Y0 is not equal to

770770773774

TABLE II. API FUNCTIONS BETWEEN STREAMING MACHINES AND HYPERVISOR.

Call Direction Description
x.pause(t 1)/x.pause() H −→M 2 Hypervisor notifies the streaming machine to stop its task window from moving forward while the downloading continues.

c.reduce(t) H −→M Hypervisor notifies the rCDN to advance its left boundary and freeze the right boundary at the same time. The downloading continues.

c.enlarge() H −→M Hypervisor notifies the rCDN to advance its right boundary and freeze the left boundary at the same time. The downloading continues.

x.restore() H −→M Hypervisor notifies the streaming machine to move forward and the length of its task window is fixed.
1 The parameter t is used to notify M how long it should keep execution of the funtion before restoring to its former state.
2 H: hypervisor, M : machine. H −→M : APIs are implemented by M and called by H .

the frequency Y1 based on which we want to make evaluations.
We desire to arrange current real users to depart the testing and
select suitable substitutes to continue. However there are many
issues unsolved now and details will be discussed in further
research.

C. Replace Early Departed Clients

Early departure may occur due to two different reasons
in VoD. One is viewer-initiated operations and the other is
the command of the hypervisor because the length of the task
window of rCDN exceeds the maximum threshold we defined.

For both situations, the early departed clients will piggy-
back a small state snapshot in the disconnection message which
includes parameters such as the scheduled arrival time of the
client and their current playpoint.

It is the orchestrator’s duty to select a substitute from
the users who have not joined testing yet. In ShadowVoD,
the playpoint of substitute should be close to the playpoint
which is included in the disconnection message sent by the
early departed client. Here we adopt a centralized orchestration
which means the substitutes are selected by the orchestrator.

Every certain time, users who have not joined testing
should inform the orchestrator of their playpoints. The or-
chestrator builds a data sheet to record this. Upon detecting
an early-departed client, the orchestrator will notify the user
whose playpoint is closest to the playpoint of early-departed
client to join testing.

V. EVALUATIONS

In this section, we evaluate the practicability of Shad-
owVoD on a complete VoD streaming system we implement.
We focus on the testification that, by collecting the piece
missing ratio of experiment in ShadowVoD, we can accurately
evaluate the performance of VoD networks. We also attest that
the distributed algorithm to emulate pause behavior proposed
in Section IV achieves the desired pause-behavior scenarios.

In the test, we arrange for 100 clients to join the testing
at 5-second interval. They continue playing for 100 seconds
after all clients have joined. In this paper we focus on the
evaluation of experiment accuracy as the protection issue has
been proved by ShadowStream. We remove the CDN capacity
limitation which means all pieces missed by the experiment
can be repaired by the dedicated CDN and viewers’ quality of
experience can be guaranteed.

A bug is injected to the experiment on purpose. We divide
the index of each piece by 20; if the remainder is equal
to 1, the corresponding piece will not be downloaded or
uploaded. We set the configuration like this to prove that
even simple parameter changes may incur serious performance
impact and fully evaluations are necessary to guarantee reliable
performance of VoD networks.

A. PCE design with pause and drag behavior omitted

Firstly, we collect the piece missing ratio of the buggy
version by running the experiment alone. The result is shown
in the second column of Table III. We should notice that
when the experiment is run alone, its behavior is totally the
same with actual production. Then, we use our PCE design.
Results shown in the third column of Table III come up to
our expectations that the measured piece missing ratio of
experiment is accurate compared with the result when the
buggy version is run alone at a negligible error. The piece
missing ratio at pplay is 0% because CDN repairs all the pieces
missed by the experiment.

TABLE III. PCE DESIGN WITH PAUSE AND DRAG BEHAVIOR OMITTED

Buggy PCE

eplay Missed 5.51% 5.46%

pplay Missed N/A 0%

The cumulative distribution functions of the piece missing
ratio of all 100 clients with and without ShadowVoD are shown
in Fig.6. We can see that by collecting the piece missing ratio
of experiment in ShadowVoD, the performance of the VoD
networks can be evaluated quite accurately.

Fig. 6. Piece missing ratio of 100 clients

B. PCE design with pause emulation

Next, we take the pause behavior of clients into consid-
eration and testify that after introducing the methodology of
flexible window length of rCDN, experiment accuracy can still
be guaranteed . We orchestrate that actual clients choose to
pause at the rate of one time every 100 seconds. Thus the
production and rCDN of the first joined client shall pause 6
times during its 600-second play time . We still consider the
three situations presented in Section III and the experiment is
orchestrated to pause 6 times in situation a, 8 times in situation

771771774775

b, 4 times in situation c. The pause times of all later joined
clients obeys the same rate with the first one.

To simplify the problem, we assume that the pause duration
of actual viewers is a discrete random variable which obeys
uniform distribution denoted by T ∼ U(5, 15) in terms of
seconds. The additional two pauses we simulate will reduce
the length of rCDN in the range between 10 second and 30
seconds . We fix the length of rCDN window as 35 seconds
to avoid early departures. We should notice that the window
length of rCDN in actual deployment only need to be set to the
recommended value according to the formula given in Section
IV as the orchestrator can always select suitable substitutes for
early departed clients.

As we adopt the distributed algorithm shown in Fig.5, in
situation c each client i independently control the simulated
experiment utilizing the probability μ = X0−X1

X0
. Once the

pause behavior of a client is notified, the hypervisor has
the possibility of μ to inform the experiment to continue
moving forward. In our evaluations, the probability μ = 1

3
and the simulated pause times X1 is expected to be 4. The
arithmetic average value of pause times of all 100 clients in
our evaluations is 3.97.

To testify the simulated experiment can evaluate the per-
formance of the VoD networks accurately, we run the buggy
version alone with pause frequency followed by 4, 6, 8 for the
first joined client. The pause times of later joined clients are
orchestrated at the same rate.

TABLE IV. EXPERIMENT ACCURACY WITH ELASTIC TASK WINDOW

4 Pause Times 6 Pause Times 8 Pause Times
Buggy PCE Buggy PCE Buggy PCE

eplay Missed 5.58% 5.33% 5.43% 5.38% 5.64% 5.27%

TABLE IV shows the comparison of piece missing ratio
between those collected when the buggy version of experiment
is run alone and when our ShadowVoD is implemented. We
can see that in all three situations, the experiment accuracy
can always be guaranteed.

C. PCE design with drag emulation

In our evaluations, 50 clients are orchestrated to drag
the progress bar 20 seconds forward every 50 seconds. The
production will have 5-second drag delay before resuming
moving again. Firstly, we run the buggy version of experiment
alone. Pieces lost during the drag delay are omitted when
computing the piece missing ratio. The result is shown in the
second column of TABLE V.

Then we use our PCE design. We set the buffer time �t
as 5-second which is equal to the drag delay. This means once
the drag behavior of a client is notified, the experiment and
production will locally quit the testing and rejoin again after
5 seconds. Then the behavior of experiment in ShadowVoD is
consistent with actual production when computing the piece
missing ratio. The piece miss ratio at eplay is 5.56 % and it
evaluate the performance of the VoD networks accurately with
a negligible error.

VI. CONCLUSIONS

We implemented the PCE scheme in VoD networks to
provide large-scale, realism performance evaluations. To create

TABLE V. PCE DESIGN WITH DRAG EMULATION

Buggy PCE

eplay Missed 5.85% 5.56%

desirable testing client behavior scenarios of pause and drag
for behavior emulation, a novel methodology of elastic window
length of rCDN and a rejoin mechanism of certain streaming
machines are achieved. We proposed a centralized mechanism
to select suitable substitutes for early-departed clients. We
demonstrated the benefits of ShadowVoD through extensive
evaluations. The results showed that our ShadowVoD can
always achieve experiment accuracy.

In the future, we will work on the further research of drag
emulation especially situations where actual frequency is not
equal to the simulated frequency of which we want to make
evaluations.

ACKNOWLEDGMENT

The authors would like to thank anonymous reviewers
for their valuable comments. This work is partially support-
ed by “National Natural Science Foundation of China (No.
61202107, No.61100220, No. 61202303)”, by “National High
Technology Research and Development Program of China (863
Program No. 2014AA01A702)”, by “Natural Science Founda-
tion of Hubei Province (No. 2014CFB1007), by “National Key
Technology Research and Development Program of China (No.
2012BAH46F03)”, and by the “Fundamental Research Funds
for the Central Universities”.

REFERENCES

[1] M. Mu, W. Knowles, and N. Race, “Understanding your needs: An
adaptive vod system,” in Multimedia (ISM), 2012 IEEE International
Symposium on. IEEE, 2012, pp. 255–260.

[2] I. Cisco, “Cisco visual networking index: Forecast and methodology,
2011–2016,” CISCO White paper, pp. 2011–2016, 2012.

[3] V. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy, and A. E. Mohr,
“Chainsaw: Eliminating trees from overlay multicast,” in Peer-to-peer
systems IV. Springer, 2005, pp. 127–140.

[4] F. Picconi and L. Massoulié, “Is there a future for mesh-based live
video streaming?” in Peer-to-Peer Computing, 2008. P2P’08. Eighth
International Conference on. IEEE, 2008, pp. 289–298.

[5] S. Sundaresan, W. De Donato, N. Feamster, R. Teixeira, S. Crawford,
and A. Pescapè, “Broadband internet performance: a view from the
gateway,” in ACM SIGCOMM computer communication review, vol. 41,
no. 4. ACM, 2011, pp. 134–145.

[6] M. Dischinger, A. Haeberlen, K. P. Gummadi, and S. Saroiu, “Char-
acterizing residential broadband networks,” in Internet Measurement
Comference, 2007, pp. 43–56.

[7] R. Krishnan, H. V. Madhyastha, S. Srinivasan, S. Jain, A. Krishna-
murthy, T. Anderson, and J. Gao, “Moving beyond end-to-end path
information to optimize cdn performance,” in Proceedings of the
9th ACM SIGCOMM conference on Internet measurement conference.
ACM, 2009, pp. 190–201.

[8] C. Tian, R. Alimi, Y. R. Yang, and D. Zhang, “Shadowstream: perfor-
mance evaluation as a capability in production internet live streaming
networks,” in Proceedings of the ACM SIGCOMM 2012 conference on
Applications, technologies, architectures, and protocols for computer
communication. ACM, 2012, pp. 347–358.

[9] Y. Huang, T. Z. Fu, D.-M. Chiu, J. Lui, and C. Huang, “Challenges,
design and analysis of a large-scale p2p-vod system,” in ACM SIGCOM-
M Computer Communication Review, vol. 38, no. 4. ACM, 2008, pp.
375–388.

[10] E. Campione and J. Véronis, “A large-scale multilingual study of silent
pause duration,” in Speech Prosody 2002, International Conference,
2002.

772772775776

