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Abstract— The major obstacle to the wide acceptance of
Electric Vehicles (EV) is the lack of a wide spread charging
infrastructure. To solve this, the Chinese government has pro-
moted EVs in public transportation. The operational patterns of
EV taxis should be different from Internal Combustion Engine
Vehicles (ICEV) taxis: EVs can only travel a limited distance
due to the limited capacity of the batteries and an EV taxi may
re-charge several times throughout a day. Understanding the
status (e.g., operational patterns, driver income and charging
behaviours) of EV taxis can provide invaluable information
to policy makers. To our best knowledge, this is the first
paper to understand EV taxis behavior patterns. We use real
taxi GPS records data from a fleet with about 600 EV taxis
operating in Shenzhen, China. We study the patterns from
two aspects: operational behaviors and charging behaviors. The
most important finding is: based on the net profits of both EV
and ICEV taxis, which are derived from data, we find that
commercial operation of an EV taxi fleet can be profitable in
metropolitan area, when specific policies give advantages to EV
taxis.

I. INTRODUCTION

Electric Vehicles (EV) are more and more popular, due
to the strengthen public willingness of contributing to en-
vironment protection. Compared with Internal Combustion
Engine Vehicles (ICEV), EVs have zero air pollution.

The major obstacle to the wide acceptance of EV, nowa-
days, is the lack of a wide spread charging infrastructure.
Unlike ICEVs’ convenience of rapid refueling at gas stations,
EVs need to re-charge via charge piles. EV infrastructure
mainly refers to a network of charge stations where EVs can
be charged. There is a closed loop: the negligible number of
EVs is the major reason of the lack of infrastructures; due to
the lack of infrastructures, people are reluctant to buy new
EVs, which in turn limits the increase of the number of EVs.

One effort to break the loop, from the government, is to
use EVs in public transportation, more specifically, taxis and
buses. In 2009, the Chinese government picked 13 cities
(including Shenzhen, Beijing and Hangzhou) to launch EV
public transportation. Among them, Shenzhen has the most
successful EV taxis service: it starts to make profit in 2013.

The operational patterns of EV taxis should be different
from ICEV taxis. Compared with an ICEV taxi, an EV taxi
can only travel a limited distance per charging due to the
limited capacity of its battery. As a consequence, an EV
taxi may re-charge several times throughout a day. What’s
more, each charging event usually costs much longer time

compared with an ICEV refueling event: every recharging
lasts for more than one hour, even with the fast charging
mode.

Understanding the operational patterns of EV taxis can
provide invaluable information to policy makers. For ex-
ample: would these features, including battery capacity and
recharging duration, significantly affect the operational dis-
tance/time/income of taxis? Does EV charging behaviors
follow any patterns? The answers to such questions can
help planning of new charge stations, expanding of existing
stations, and estimating the business potential of new EV
taxi fleets.

To our best knowledge, this is the first paper to understand
EV taxis’ behavior patterns. We use real taxi GPS records
data from a fleet with about 600 EV taxis operating in
Shenzhen, China. We study the patterns from two aspects:
operational behaviors and charging behaviors. The main
contributions of this paper include:

• Overall, the travel and occupied time/distance are com-
parable between EV and ICEV taxis. We derive the
net profits of both EV and ICEV taxis, and find that
an EV taxi can earn almost as much as an ICEV taxi
although the EV taxi spend more time on charging.
The implication is that commercial operation of an EV
taxi fleet can be profitable in metropolitan area, when
specific policies give advantages to EV taxis.

• The distribution of charge demands have direct relation-
ship with the number of charging piles of every charge
station. We also find that a particular charge station
can be under-utilized if it’s far away from other charge
stations. The implication is that location planning of
charging stations might need to consider the distance
among stations.

• We find that although EV taxi companies declare the
maximum trip distance per full-charging of an EV
taxi is 240 Km, the actual trip distance between two
consecutive charge events of most EV taxis is only about
110 Km. The implication are two fold: battery capacity
decreases significantly over time, leading more charg-
ing times and less travel distance; distance limitation
enforced by battery capacity affects drivers’ charging
behaviours.

This rest of the paper is organized as follows. In Sec-
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tion II, we describe the data sets and analyze methodologies.
Section III investigates the collective operational behavior
patterns of EV taxis and compare it with ICEV taxis. In
Section IV, the collective charging behavior patterns of
EV taxis are explored. The related works are discussed in
Section V. We conclude the paper in Section VI.

II. STUDING CASE

A. Overview of Electric Taxi in Shenzhen

The studying case used to understand EV taxis’ behavior
patterns is in Shenzhen, China. The amount of EV taxis is
around 1000 until 2014. Considering the total amount of
taxi fleets in Shenzhen, the percentage of EV taxis is less
than 10%. Due to the limitation of battery capacity, EV taxis
can only travel a certain distance compared with ICEV. A
number of charging stations have been built and deployed in
Shenzhen, offering fast charging piles for EV taxis.

We list and compare different EVs used for taxis in
different cities in Table I. BYD e6 is adopted in Shenzhen.
Compared to other types of EV taxis, BYD e6 can travel
more distance and faster.

TABLE I

EV TAXIS IN CITIES

City Shenzhen Beijing Hangzhou
Vehicle Type BYD e6 CHANGAN

E30
HAIMA
PULIMA

Nominal Maximum Dis-
tance per full-charging

240 Km 160 Km 80 Km

Maximum Speed 160 Km/h 120 Km/h 70 Km/h
Battery Capacity 72 kWh 29 kWh 24 kWh
Full-charging Time 60 minutes 45 minutes 30 minutes

Our field analysis indicates that passengers in Shenzhen
prefer to take EV than ICEV taxis. There are two main
reasons. First, to promote the usage of EV taxis, a law is
carried out that: a passenger needs to pay additional 3 RMB
per trip for an ICEV taxi, but not for a EV taxi. Second,
BYD e6 is larger and more comfortable than standard ICEV
vehicle types. The result is that EV taxis are easier to
pick up passengers when compete with ICEV taxis. This
user preference has critical effect on EV taxis’ operational
conditions, which we will demonstrate in later analysis.

B. Dataset Description

The major dataset is taxi GPS records. The dataset consists
of over 14,000 taxis, including around 600 (out of 1000) EV
taxis and around 13,000 ICEV taxis. Each taxi updates a GPS
record per 30 seconds in average, together there are around
4 GB data per day and over 28 GB per week. We use the
dataset from March 1st, 2014 to March 7st,2014, lasting for
one week.

The taxi GPS records data description is showed in Ta-
ble II. The longitude and latitude fields together present the
spatial position of a taxi; the time field gives the time of a
specific taxi report. The CarType and Company fields tell us
whether a taxi is an EV. Note that there are also two types of
ICEV: red for urban areas and green for suburb areas. Since

TABLE II

TAXI GPS RECORD

CarId Unique identity for a taxicab
CarType For EV,it’s blue;for ICEV,it’s red and green
Company name of company one taxi belongs to
longitude longitude of location recorded
latitude latitude of location recorded

time time of recorded: 2014-03-01T04:52:15.000Z

Fig. 1. Distribution of charge stations in Shenzhen

green taxis only operate in the suburb areas of Shenzhen City
and their charging mode is also different from red and blue
taxis, we omit those green taxis and only choose red taxis
as representatives of ICEV taxis.

Another dataset is taxi transaction records. The data fields
description are given in Table III. Combined the information
from GPS and transaction, we can derive the information of
where a taxi picks up and drops off a passenger (i.e., the
OD-pair data). The distance field can be used to calculate
taxis’ operating distance precisely and the field of fee can
be used for calculating taxis’ income.

TABLE III

TAXI TRANSACTION RECORD

CarId Unique identity for a taxicab
uptime time of a taxi picking up a passenger

downtime time of a taxi droping off a passenger
distance distance of operating a trip

fee fee of a trip (not including additional ICEV fee)

GIS data is used to describe Shenzhen City and the
distribution of every charge station in Shenzhen as shown in
Figure 1. Every red dot refers to the location of one charge
station and the background zones refer to Shenzhen City.

C. Analyze methodology

Charge event detection We need to extract charge
events. The observation is that a charge event always lasts
for a long time; as a consequence, the longitude and latitude
values of every GPS record are nearly constant during this
period. Using this feature, we can detect charge events from
large amount of GPS records, as shown in Figure 2.

We use the location of every charge station as the center
and a distance of 200 meters as the radius to obtain a circle
region called stay region. Every dot refers to a GPS record
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Fig. 2. Charging Event Detection

tagging both spatial and temporal information. When an EV
taxi reaches a charge station, many GPS records drop into
the stay region. We use 30 minutes as a time threshold value,
meaning the time interval between the first and the last GPS
records located in a stay region should be larger than the
time threshold. After obtaining a stay point set, we use the
information of first and last GPS records to learn when an
EV taxi reaches and leaves a charge station and how long
the charge event lasts.

Ground truth To evaluate whether the charge event
detection methodology works well in reality, we chose one
charge station on which to perform a field study. This
field study lasted from 4:00pm to 6:30pm on July.20, 2014.
We recorded the EV taxis’ arrival and departure time, and
also how long each EV taxi spent on charging. Totally, 30
charging records were collected as a ground truth to evaluate
the charge event detection methodology.

Using our methodology, we obtain EV taxis’ charge events
on that charge station at the period. We compred the filtered
results with the ground truth: for totally 30 EV taxis from the
ground truth, 29 EV taxis’ charge events could be correctly
detected, meaning the accuracy of our charge event detection
is about 96.7%.

Coverage and distance For each taxi, we sort all its
records in time sequence and obtain a trajectory of the taxi
like this: R1 → R2 →·· ·→ Rn. The centroid of a specific taxi
K can be calculated by Equation 1:

centroidK = (
∑n

i=1 Ri.lon
n

,
∑n

i=1 Ri.lat
n

). (1)

For analyzing taxis’ coverage, we use the centroid and
radius of gyration. The gyration radius of a taxi K can be
calculated by Equation 2; we also define dist(Ri,centroid) to
represent its distance from this taxi’s centroid.

radiusK =
∑n

i=1 dist(Ri,centroid)
n

(2)

With consecutive GPS records of taxi K, we define
dist(Rt ,Rt+1) to represent the distance between those two
GPS records so we can calculate the total travel distance
of taxi K by Equation 3:

SumDist =
n

∑
t=1

dist(Rt ,Rt+1). (3)

III. OPERATIONAL BEHAVIORS

EV taxis’ behavior patterns consist of two parts: oper-
ational and charging. We first analyze both temporal and
spatial operational patterns and highlight how these patterns
are different from those of ICEV taxis.

A. Temporal Operational Characteristics

The results of both EV and ICEV taxis’ temporal op-
erational patterns are shown in Figure 3. In China, many
taxis operate for a whole day by time-division-multiplexing
between two drivers. Figure 3(a) shows the distributions of
total travel hours. About 30% of ICEV taxis travel less than 8
hours; it is obvious that they are operated by a single driver.
Compared with ICEV taxis, almost all EV taxis work for
longer than 19 hours; take the time spending on charging
into consideration, we can safely assume that almost all EV
taxis work for a whole day. For fair comparison, we filter
the results of those ICEV taxis which only work for a half
day in the rest of the paper.

After filtering, we compare occupied time (the taxime-
ter is on) between EV and ICEV taxis in Figure 3(b).
The distributions of occupied time between EV and ICEV
are comparable: most taxis have around 9∼10 hours with
taximeter on. From Figure 3(a) and (b) together, we can
observe that ICEV taxis’ average length of both operating
and occupied time are longer than that of EV taxis. The
implication is that: charging demand do have large negative
effects on EV taxis’ operational time.

Figure 3(c) shows the distribution of the ratio between
occupied time and total time. About 73% of ICEV taxis’ ratio
value is 0.4∼0.5; while 85% of EV taxis’ ratio values fall
in this range. An EV taxis efficiency of operating is higher
than that of an ICEV taxi: although EV taxis lost much time
on charging, their time of seeking a passenger is much less
than ICEV taxis. The implication is that: the additional fee
law and the comfortability do have large positive effects on
passengers’ favour of EV taxis.

B. Operational Distance

From taxi GPS record data, taxis’ average travel distances
per day can be calculated. The operating distance distribution
of EV and ICEV taxis are showed in Figure 4(a). Most EV
and ICEV taxis travel in a range of 450 Km∼550 Km. ICEV
taxis’ proportion of over 500 Km is larger than that of EV
taxis.

From taxi transaction data, we can obtain occupied dis-
tances. Figure 4(b) shows the distributions of occupied dis-
tances comparison. The majorities of both locate in a range
of 250 Km∼350 Km. The proportion of EV taxis dropping in
this range is a little higher compared with that of ICEV taxis.
Figure 4(c) shows the distribution of ratio between occupied
distance and total distance; EV taxis efficiency of operating
is higher than ICEV taxis. The analysis in distance verified
our temporal characteristics obtained above.
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Fig. 3. (a) Total hour compare (b) occupied hour compare (c) ratio of occupy/total compare
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Fig. 4. (a) Total distance compare (b) occupied distance compare (c) ratio of occupy/total compare

C. Operational Coverage

Centroid and gyration radius can demonstrate a taxi’s
operating coverage. By analyzing the moving trajectories,
we get the centroid and gyration radius of each taxi. For
EV taxis, we only consider moving trips; those records of
extracted charging events are filtered before calculation.

Figure 5(a) and (b) show EV/ICEV taxis’ centroid dis-
tribution respectively. The deeper a zone’s color is, the
more centroids locate in the zone. We can observe that
EV taxis’ centroid frequency range value changes much
sharper than that of ICEV taxis: the distribution of ICEV
taxis’ centroids is much more even than that of EV taxis.
Further investigation shows that EV taxis’ centroids are
mainly distributed in those zones where a large number of
charging piles exist.

The value of gyration radius can be used for further
analyse. We find that EV taxis’ radius of gyration is about
6.70 Km while ICEV taixs’ radius is about 7.37 Km. Bigger
radius value means that ICEV taxis can cover a larger areas
than EV taxis. Investigations show that ICEV taxi drivers
don’t worry about re-fueling opportunities as much as EV
drivers’ about charing opportunities. By analyzing centroids
and radius of gyration together, the implication is that: EV
taxi drivers prefer to operate around the locations of charge
stations.

D. Net profit comparison

In this part, we compare the net profit of ICEV and EV
taxis. The related parameters are shown in Table IV. Both

taxis operate in the same mode: 10 RMB within 2 Km, and
2.4 RMB per Km after that. Actually, although passengers
are more likely to choose EV taxis since they don’t need to
pay additional fuel fee, the number of average trips per day
of ICEVs is still larger than EVs. As mentioned above, this
is due to the reduction in EV operational time. Renting fee
per day refers to the money that taxi drivers should give to
their companies for the vehicles. The difference between oil
price and electricity price is EV taxis’ biggest advantage in
cost: an ICEV taxi consumes 9.0 litres oil while a EV taxi
requires 26 kWh electricity per 100 Kilometers.

TABLE IV

TAXI FEE COMPARISON (PER DAY)

ICEV taxi EV taxi
Operational Trips Count 48.00 44.00

Average Distances Per Trip(Km) 6.788 6.843
Income (RMB) 1223 1156

Renting Fee Per Day(Yuan) 200 360
oil price / electricity price 8.0 0.66

fuel consuming per 100 Km 9.0L 26kWh

Note that ICEV taxis can charge for additional 3 RMB
per trip. An ICEV taxi drivers can obtain an additional 144
RMB per day. On the other hand, to promote EV usgae,
EV taxi drivers could get 2000 RMB base salary from taxi
companies, meaning 66.67 Yuan per day. All this factors
need to be taken into consideration in net profit calculation.

For EV taxi drivers, we calculate their net profits using
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Fig. 5. (a) EV operating coverage (b) ICEV operating coverage

Equation 4:

EV Pro f it =
n

∑
i=1

ei −Pe ·Se −Re +Be. (4)

Here i refers to the i−th trip. Therefore, ei means the money
that earned by this operational trip. Re is the renting fee; Pe

is the electricity price per kWh and Se is the total number of
kWh of this EV taxi. Be is the additional base salary from
taxi companies.

For ICEV taxi drivers, we calculate their net profits using
Equation 5:

ICEV Pro f it =
n

∑
i=1

e′i +Pa ·n−Pg ·D−R′

e. (5)

Here i refers to the ith trip; e′i means the money earned by
this operational trip; R′

e is the renting fee; Pa is the additional
fuel fee and n is the total number of operational trips; Pg is
the gasoline price per kilometer and D is the total distance
that this ICEV taxi traveled.

The results of net profits are as follows: an EV taxi can
earn 535 RMB net profit per day on average, while an
ICEV can earn 580.0 RMB. The results demonstrate that
the difference between petroleum price and electricity price
is EV taxis’ biggest advantage in operating. The implication
is that the additional fee is a rapier: it does increase the
trips per day for EVs, but also reduces the net profits.

To sum up, we prove that commercial operation of an EV
taxi fleet can be profitable in metropolitan area.

IV. CHARGING BEHAVIORS

A. Charging Demand Distribution

For every charge station, we accumulate the number of
charging events; the distribution of charging demand is
shown in Figure 6(a). A dot in the figure refers to a charge
station. The deeper the color is, the more charge demands
the station receives. It is obvious that the distribution of EV
taxis’ charge demands is uneven, EV taxi drivers are inclined
to choose some charge stations compared with others.

We list top-7 mostly used stations, together with their
numbers of piles, in Table V. FuTian station has 116 charge

TABLE V

TOP-7 CHARGE STATIONS

Name of charge sta-
tion

Number of charging
piles

Charge demands per
day

FuTian 116 1022
Taoyuan Cun 12 149
TianBei 16 129
Tiyu Guan 16 98
NanShan 16 73
Mingzhi Square 23 67
Xiangmi Lake 12 61

piles, which is much more than other charge stations; its daily
charge demands is 1022, accounting for over 50% of the
total charge demands. Other stations each has piles ranging
from 12 to 23; the changing demands are comparable. The
implication is that: the number of charging piles is a major
factor of station preference.

Note that most charge stations have similar number (10 to
30) of charge piles but their usage frequency are different.
For example, TianBei (16 charge piles) has 129 charge
demands while Information College (20 charge piles) has
only 2 charge demands per day: there are other factors
influencing the distribution of charge demands. We cluster
charge stations into three categories depending on their
frequency of charge demands as Figure 6(b). The charge
stations in zone A refer to those which frequency of charge
demands is below 5, the charge stations in zone B refer to
those which frequency of charge demands is over 50 while
the charge stations in zone C refer to those which frequency
of charge demands is about 20. The top-7 charge stations are
clustered into zone B, meaning that when FuTian Charge
Station has no available charge piles, EV taxi drivers are
inclined to charge in other charge stations which is near
FuTian Charge Station. We can also observe that since there
are some charge stations distributed between zone B and
zone C, leading to some charge demands happening in zone
C.

Contrary to that, there are rarely charge demands emerging
in zone A since between zone A and zone B no charge station
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Fig. 6. (a) Charging Demand Distribution (b) Charging Location Distribution
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Fig. 7. Charging Temporal Distribution

is distributed, meaning that EV taxi drivers are afraid of
using up battery energy and no charge stations for charging
on the way. The implication is that: the distribution of
charge demands is also affected by relative locations of
charge stations. It is significant for deployment of charge
stations, i.e., when deploy a new charge station, the distance
between itself and other charge stations should be considered,
avoiding the phenomenon of under-utilized charge stations in
zone A.

B. Charging temporal distribution

Figure 7 shows the temporal distribution of charge de-
mands. We also present the temporal distribution of passen-
ger requests; note that these requests are gathered from both
EV and ICEV taxis’ transaction records. The implication
is that: temporal charging behavior is mostly affected by
passenger requests. When charge demands form a peak,
passenger requests correspond to a valley and vice versa.
It is obvious that EV taxi drivers always choose time of less
passenger requests to charge their taxis; it is a reasonable
choice which helps minimizing the lost during charging

hours. Figure 7 shows there are 4 peak periods for charging;
we explain the details obtained from field investigation in
Table VI.

TABLE VI

WORK TIME DISTRIBUTION

Work
shift

Distribution of
time

Charging
time
(Hour)

remark

Day
shift

10:30 - 12:00 1.0 Having
lunch and
charge

Day
shift

16:00 - 17:30 1.5 Full charge
before
shifting

Night
shift

20:30 - 22:00 1.0 Having
dinner and
charge

Night
shift

04:00 - 05:30 1.5 Full charge
before
shifting

C. Distance Before Last Hop

The concept of DBLH (Distance Between Last Hop)
means the distance between the charge location EV taxis
charging and the location of EV taxis last dropping off
passengers before charging. In this research we calculate the
frequency for different values of DBLH. The result is shown
in Figure 8.

Figure 8 shows that most EV taxis’ values of DBLH is
less than 6 Km and about 42% of EV taxis’ DBLH values
are less than 2 Km; only a very small proportion of EV taxis’
DBLH values is more than 10 Km. We use an exponential
function for fitting this pattern and the equation is shown in
Equation 6:

y(x) = 0.7567e−0.2683x
. (6)

The implication is that: EV taxi drivers always like to receive
last passengers’ requests whose destination is near charge
stations.
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D. Distance between consecutive charging events

According to the charging event records filtering from EV
taxis’ GPS records data, we could calculate total distance
and occupied distance between consecutive charging events
respectively, which will help us understand EV taxi drivers’
charging behaviors better. The results are shown in Figure 9.

Figure 9(a) shows that most of EV taxi drivers travel about
106 Kilometers between consecutive charging events and
Figure 9(b) indicates that most of EV taxi drivers operate
a distance of about 65 Kilometers between consecutive
charging events. Although EV taxi companies declare the
maximum trip distance per full-charging of an EV taxi is
240 Km, the actual trip distance between two consecutive
charging events of most EV taxis is about 106 Km.

The are two implications. First of all, since fast charging
mode is used for EV taxis to reduce charging time, it may
weaken the battery capacity, leading to less distance that
an EV can travel. Secondly, EV taxi drivers are afraid of
battery using up, so they usually travel to charge stations
for charging before the battery drops to a low state.

For exploring battery attenuation problems further, we
analyze every EV taxi’ charging times per day and find that
most of EV taxis would be charging 3∼4 times throughout
a day. Based on their charging times, we cluster EV taxis
into two categories, i.e., one kind is to charge 3 times per
day while the other kind is to charge 4 times per day. For
those two categories, we calculate their distance between two
consecutive charging events respectively and the results is
shown in Figure 10.

We use cumulative density function (CDF) to analyze their
distribution of distance between two consecutive charging
events and it’s clear that those charging 3 times per day can
travel more distance than those charging 4 times. Actually,
the main difference between them is their time when those
EV taxis are put into market. Most of those charging 3
times per day are put into market for operating since De-
cember,2012 while August, 2011 for those charging 4 times
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Fig. 10. Empirical CDF Distribution

per day. The implication is that: battery capacity decreases
significantly over time, leading more charging times and less
travel distance per full-charged.

Figure 9(c) shows the distribution of occupied rate be-
tween consecutive charging events. Occupied rate refers
to the ratio between occupied distance and total distance
between consecutive charging events. We use a Gaussian
function for fitting this pattern and the equation is shown
in Equation 7:

y(x) = 0.2874e
−

(x−0.673)2

2(0.1325)2 (7)

Equation 7 shows that occupied rate of EV taxi drivers
densely locate on the value of 0.673 and there are still a
lot of occupied rates less than 0.5, which means that there
still exists space to improve occupied rate by some taxi
scheduling methods.

V. RELATED WORK

In recent years, the promotion of EV and deployment
of EV infrastructure have led to massive researches which
can be divided into EV charging location problem and EV
charging schedule problem. Two models are used in EV
charging location problem: flow-based model and activity-
based model. For example, Kuby et al. [1] proposes the
Flow Refueling Location Model(FRLM) for alternative-fuel
vehicles and Kim et al. [2],Capar et al. [3] extend raw FRLM
by adding new features. Jung et al. [4] use activity-based
model to analyze queue delay of charge stations and offer
decision support for choosing locations of undeployed charge
stations aiming for minimizing EV taxi drivers’ queue time
for charging. Besides, Gharbaoui et al. [5] use activity-based
model finding that in urban areas public charge stations can
be underutilized and location selecting of charge stations
should be considered to reduce EV owners’ range anxiety.

Compared to EV charging location problem, more factors
should be considered into EV charging schedule problem.
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Fig. 9. (a) Total distance (b) occupied distance (c) ratio of occupy/total

For example, Ma et al. [6] and Gan et al. [7] use different
decentralized charging control for reducing charging cost by
avoiding charging during the electricity-used peak hours;
Sundstrom et al. [8] propose a novel method to reduce
the overloading in the power grid. Kim et al. [9] builds
a reservation-based schedule system to respond to multiple
charging request; Qin et al. [10] and Lu et al. [11] propose
dispatching strategies for reducing EV charging waiting time
so that EV taxi drivers can have more operation time.

VI. CONCLUSION

In this paper, we study the EV taxis’ operational patterns
from taxi GPS and transaction records in Shenzhen, China.
To our best knowledge, this is the first paper to understand
EV taxis behavior patterns. The most important finding is:
based on the net profits of both EV and ICEV taxis, we
find that commercial operation of an EV taxi fleet can be
profitable in metropolitan area. There are also some implica-
tions need further investigation: the impact of distance among
charge stations to drivers’ decisions, the battery capacity may
decrease over time, etc..

In the future, we would like to analyze EV taxi charging
location problems, EV taxi charging schedule problems, and
modeling the battery capacity decrease trend. We should
consider how to choose locations of charge stations for
reducing cost of EV taxi drivers. The cost includes distance
traveling to charge station and time waiting for charging
in some charge stations. We also plan to design related
scheduling algorithms to schedule EV taxis’ charge de-
mands dynamically in order to reduce their waiting time for
charging, which will promote the development of EV and
EV infrastructures. At last, modeling the battery capacity
decrease trend can help the administrator authority to run
EV taxi fleet more efficiently.

ACKNOWLEDGMENT

The authors would like to thank anonymous reviewers for
their valuable comments. This work is partially supported
by “National Natural Science Foundation of China (No.
61202107, No. 61100220, No. 61202303)”, by the “Funda-
mental Research Funds for the Central Universities”, and by
NSF under grant CCF-1016966.

REFERENCES

[1] M. Kuby and S. Lim, “The flow-refueling location problem for
alternative-fuel vehicles,” Socio-Economic Planning Sciences, vol. 39,
no. 2, pp. 125–145, 2005.

[2] J.-G. Kim and M. Kuby, “The deviation-flow refueling location model
for optimizing a network of refueling stations,” international journal
of hydrogen energy, vol. 37, no. 6, pp. 5406–5420, 2012.

[3] I. Capar, M. Kuby, V. J. Leon, and Y.-J. Tsai, “An arc cover–path-cover
formulation and strategic analysis of alternative-fuel station locations,”
European Journal of Operational Research, vol. 227, no. 1, pp. 142–
151, 2013.

[4] J. Jung, J. Y. Chow, R. Jayakrishnan, and J. Y. Park, “Stochastic
dynamic itinerary interception refueling location problem with queue
delay for electric taxi charging stations,” 2013.

[5] M. Gharbaoui, B. Martini, R. Bruno, L. Valcarenghi, M. Conti, and
P. Castoldi, “Designing and evaluating activity-based electric vehicle
charging in urban areas,” in Electric Vehicle Conference (IEVC), 2013
IEEE International. IEEE, 2013, pp. 1–5.

[6] Z. Ma, D. Callaway, and I. Hiskens, “Decentralized charging control
for large populations of plug-in electric vehicles,” in Decision and
Control (CDC), 2010 49th IEEE Conference on. IEEE, 2010, pp.
206–212.

[7] L. Gan, U. Topcu, and S. Low, “Optimal decentralized protocol for
electric vehicle charging,” Power Systems, IEEE Transactions on,
vol. 28, no. 2, pp. 940–951, 2013.

[8] O. Sundstrom and C. Binding, “Planning electric-drive vehicle charg-
ing under constrained grid conditions,” in Power System Technology
(POWERCON), 2010 International Conference on. IEEE, 2010, pp.
1–6.

[9] H.-J. Kim, J. Lee, G.-L. Park, M.-J. Kang, and M. Kang, “An efficient
scheduling scheme on charging stations for smart transportation,”
Security-Enriched Urban Computing and Smart Grid, pp. 274–278,
2010.

[10] H. Qin and W. Zhang, “Charging scheduling with minimal waiting
in a network of electric vehicles and charging stations,” in Proceed-
ings of the Eighth ACM international workshop on Vehicular inter-
networking. ACM, 2011, pp. 51–60.

[11] J.-L. Lu, M.-Y. Yeh, Y.-C. Hsu, S.-N. Yang, C.-H. Gan, and M.-S.
Chen, “Operating electric taxi fleets: A new dispatching strategy with
charging plans,” in Electric Vehicle Conference (IEVC), 2012 IEEE
International. IEEE, 2012, pp. 1–8.

2479


