
The International Journal of Web Services Research is indexed or listed in the following: ABI/Inform; ACM Digital Library; Bacon’s
Media Directory; Burrelle’s Media Directory; Cabell’s Directories; Compendex (Elsevier Engineering Index); CSA Illumina; Current
Contents®/Engineering, Computing, & Technology; DBLP; DEST Register of Refereed Journals; Gale Directory of Publications &
Broadcast Media; GetCited; Google Scholar; INSPEC; Journal Citation Reports/Science Edition; JournalTOCs; Library & Information
Science Abstracts (LISA); MediaFinder; Norwegian Social Science Data Services (NSD); PubList.com; Science Citation Index Expanded
(SciSearch®); SCOPUS; The Index of Information Systems Journals; The Standard Periodical Directory; Thomson Reuters; Ulrich’s
Periodicals Directory; Web of Science

Copyright
The International Journal of Web Services Research (IJWSR) (ISSN 1545-7362; eISSN 1546-5004), Copyright © 2014 IGI Global. All
rights, including translation into other languages reserved by the publisher. No part of this journal may be reproduced or used in any form
or by any means without written permission from the publisher, except for noncommercial, educational use including classroom teaching
purposes. Product or company names used in this journal are for identification purposes only. Inclusion of the names of the products or
companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark. The views expressed in this
journal are those of the authors but not necessarily of IGI Global.

Special Issue on New Techniques of Services Computing

Guest Editorial Preface
iv Jia Zhang, Carnegie Mellon University, Pittsburgh, PA, USA

Hanhua Chen, Huazhong University of Science and Technology, Wuhan, China

Research Articles
1 Automatic Construction of Service Network based on OpenCyc

Xiaocao Hu, School of Computer Science and Technology, Tianjin University, Tianjin, China
Zhiyong Feng, School of Computer Science and Technology, Tianjin University, Tianjin, China
Shizhan Chen, School of Computer Science and Technology, Tianjin University, Tianjin, China

24 Regularity and Variability: Growth Patterns of Online Friendships
Lun Zhang, Department of Journalism & Science Communication, University of Chinese Academy of Sciences, Beijing, China
Jonathan J. H. Zhu, Department of Media and Communication, City University of Hong Kong, Kowloon, Hong Kong

37 Improving Recommendation Accuracy and Diversity via Multiple Social Factors and Social Circles
Yong Feng, Ministry of Education, Chongqing University, Chongqing, China
Heng Li, Ministry of Education, Chongqing University, Chongqing, China
Zhuo Chen, Ministry of Education, Chongqing University, Chongqing, China

52 An Integrated Framework for Semantic Service Composition using Answer Set Programming
Yilong Yang, Department of Computer and Information Science, University of Macau, Macau, China
Jing Yang, College of Computer Science and Technology, Guizhou University, Guiyang, China
Xiaoshan Li, Department of Computer and Information Science, University of Macau, Macau, China
Weiru Wang, Department of Computer and Information Science, University of Macau, Macau, China

67 Improve Distributed Client Lifecycle Control in ShadowStream
Junhua Yan, Huazhong University of Science and Technology, Wuhan, China
Chen Tian, Huazhong University of Science and Technology, Wuhan, China
Jingdong Sun, Huazhong University of Science and Technology, Wuhan, China
Hanzi Mao, Huazhong University of Science and Technology, Wuhan, China

Table of Contents
October-December 2014, Vol. 11, No. 4

International Journal of
Web Services Research

International Journal of Web Services Research, 11(4), 67-83, October-December 2014 67

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

ABSTRACT
ShadowStream is a novel Internet live streaming system that integrates performance evaluation as an intrinsic
capability. An essential component in ShadowStream is distributed lifecycle control mechanism, which assigns
each client a virtual arrival/lifetime to create a particular scenario to evaluate the performance of streaming
system. The original design focuses on utilizing stable streaming viewers in physical world to guarantee the
accuracy of ShadowStream, which, on the other hand, significantly limits the scale of the experiment. The
authors’ research develops a novel distributed client lifecycle control to get rid of restrictions caused by the
limited number of stable viewers in live-testing streaming networks. The core idea of their research is to match
the desired experimental scenario with real viewers’ behavior in physical world. The result demonstrates that
with the authors’ methodology, the scale of experiments can be doubled.

Improve Distributed
Client Lifecycle Control

in ShadowStream
Junhua Yan, Huazhong University of Science and Technology, Wuhan, China

Chen Tian, Huazhong University of Science and Technology, Wuhan, China

Jingdong Sun, Huazhong University of Science and Technology, Wuhan, China

Hanzi Mao, Huazhong University of Science and Technology, Wuhan, China

Keywords: Lifetime, Live Streaming, PCE, ShadowStream, User Behavior

1. INTRODUCTION

ShadowStream (Chen&Richard, 2012, pp.
347-358) is a novel Internet live streaming
system that integrates performance evaluation
as intrinsic capability. It introduces a novel
production-CDN-experiment (PCE) streaming
machine layout to protect real viewers’ quality-
of-experience (QoE) in experiment, at the same
time gets accurate results.

An essential component in ShadowStream
system is lifecycle control. In general, it lets a

production viewer participate in the experiment
by assigning arrival time and lifetime to emulate
a virtual client’s arrive and departure events. To
distinguish it with clients’ real behavior time
in physical world, we call it virtual arrival/
departure time.

To achieve this, we have introduced dis-
tributed mechanism in the process of control.
When appointed a specific behavior scenario,
orchestrator will send relevant parameters to
testing clients to let them locally compute
their arrival/life time for testing. In case of a

DOI: 10.4018/IJWSR.2014100105

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

68 International Journal of Web Services Research, 11(4), 67-83, October-December 2014

client quits the experiment ahead of its virtual
departure time unexpected, which we call early-
quitted client, orchestrator will choose another
viewer as a replacement and duplicate its status
to the client.

However, early-quitted clients do have a
negative influence on accuracy, since the process
of replacement cannot be totally seamless. Thus
we merely sort out stable viewers in physical
world to perform distributed control for a spe-
cific behavior scenario to minimize the impact
of replacement, which, on the other hand, has
imposed restrictions on the scale of experiment
in ShadowStream. Since in general cases stable
clients are usually too small a group to be ef-
fectively utilized in production channel, which
has been proved in Figure 1 (Wang&Liu, 2008).
Figure 1(a) indicates that the majority of viewers
just stay in channel for a quite short period in
physical world, and if consider a client as stable
when its lifetime exceed 40% of the observed
session, it takes up only 5% to 18% of the whole
viewers in different traces. Furthermore, Figure
1(b) explains the percentage of stable clients in
a per-snapshot view in channel, and it is clear
that there exist only 54% to 90% stable clients
in a snapshot under the circumstances above.

In this paper, a novel distributed client
lifecycle control is developed to get rid of re-
strictions caused by limited number of stable
viewers in live-testing streaming networks. And
dedicates to increasing real viewers’ utilization
level in physical world and decreasing replace-
ment times in the process of experiment.

The major challenge in the course of
experiment control in live testing platform is
about the real viewers. As a live testing system,
ShadowStream is designed to orchestrate de-
sired experimental scenarios from production
viewers, without disturbing their quality of
experience. Other than clients in a traditional
testing platform, production viewers in live
testing cannot be controlled. Furthermore,
we are not allowed to interfere in their own
behaviors (e.g., arrive, depart), or change their
behaviors casually. That is to say, before send-
ing a command to a client, guarantees should
be made to ensure that the command which
determines client’s act in the experiment will
not be in conflict with its real behavior at some
point in the future.

The core idea is to match the desired ex-
perimental scenario with viewers’ real behavior
in physical world to scale up the experiment.

Figure 1. The general situation about lifetime distribution and ratio of stable nodes per snapshot
in physical world. (a) CCDF of life time distribution in different traces. (b) Ratio of stable nodes
to All Nodes per snapshot.

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Web Services Research, 11(4), 67-83, October-December 2014 69

Moreover, we make a further survey about
taking advantage of a certain group of stable
viewers in physical world to achieve the desired
scenario by letting them rejoin the testing under
the specific situation.

The remainder of this paper is organized as
follows: Section 2 introduces the background
of our research about ShadowStream and ex-
periment orchestration in detail. And Section 3
describes the basic idea about predicting each
viewer’s residual lifetime in physical world
and matching it with the specific scenario in
experiment. Then Section 4 explicitly explains
the implementation of orchestration and relevant
algorithms to control testing clients’ behavior
in experiment before we carefully evaluate its
performance and testify the validity in Section 5.

1.1. Related Work

Live streaming (Chang&Wang, 2009;
Li&Keung, 2008; Yin&Chiu, 2007) is a ma-
jor Internet application in our daily life and
online streaming has dominated the traffic
on today’s Internet (Cisco, 2012). And the
key capability to guarantee that live stream-
ing networks provide reliable performance
is to subject them to large-scale, realistic
performance evaluations, which is among the
most desired and the most difficult to achieve.
Thus many developers have turned their way
to theoretical modeling (Bonald&Massoulie,
2008; Zhou&Chiu, 2007; Kumar&Liu, 2007),
simulation (Magharei&Rejaie, 2007), or test-
bed/lab testing (Banerjee&Bhattacharjee, 2002;
Castro&Druschel, 2003; Picconi&Massoulie,
2008). However, all of those existing methods
fail to live up to the testing requirements consid-
ering their limitation either in scale or in realism.

Shadowstream attempts to gets rid of the
limitation caused by tradition evaluation plat-
form considering the fact that live streaming
systems updated without going through realistic,
large-scale evaluations may operate at sub-opti-
mal states, and often do not achieve performance
expectations formed at small-scale lab settings.
And it integrates evaluation into production live
streaming systems, which provides experiment

scales that are not possible in any existing test-
ing platforms such as VINI (Bavier&Feamster,
2006), PlaneLab (Chun&Culler, 2003), or
Emulab (White&Lepreau, 2002).

2. SHADOWSTREAM
BACKGROUND

2.1. The PCE Design

ShadowStream is a novel Internet live streaming
system that integrates performance evaluation as
an intrinsic capability. It is a hybrid P2P-CDN
piece based streaming system, where a live
streaming client downloads and uploads stream-
ing data in units of pieces. In ShadowStream,
a self-complete set of algorithms to download
and upload pieces is called a streaming machine
or a machine for short.

ShadowStream needs to address two major
challenges. The first is protection: since real
viewers are used, live testing needs to protect
the real viewers’ quality of experience from the
performance failures of experimental systems.
The second is orchestration: live testing needs
to orchestrate desired experimental scenarios
from production viewers, without disturbing
their quality of experiences. ShadowStream
applies a novel Experiment →Validation→
Repair scheme to achieve both protection and
transparent orchestration simultaneously.

The key idea is to handle each downloading
task of a piece in a temporal sequential pattern.
To reveal the true performance of experiment,
ShadowStream assigns the task of downloading
a piece first to experiment alone. If experiment
cannot download it by its playpoint, rCDN takes
over the responsibility and try to “repair” by
download from CDN. If the repair of rCDN
fails, production shall try to download it as a
final protection. We evaluate the performance
of the testing VoD streaming network by the
piece missing ratio of experiment.

A streaming hypervisor is introduced to
inform streaming machines of pieces which
they should download respectively. Conceptu-
ally the total downloading range spanning from
real playpoint to sourcepoint is divided into

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

70 International Journal of Web Services Research, 11(4), 67-83, October-December 2014

three parts by production, rCDN and experiment
sequentially. Each part is referred as the task
window of corresponding streaming machine.
The playpoint and sourcepoint advance in time
along with the task windows and the piece
missed by the right task window becomes the
downloading task of the left one. As shown in
Figure 2, rCDN takes over the responsibility
to download piece 90 if experiment fails to
download it from time t = 100 to t = 101 .

2.2. Test Orchestration

To deal with real viewers in production chan-
nel, it has introduced novel, local orchestration
algorithms to orchestrate desired experimental
scenarios in addition to the PCE streaming
machine layout, and the major components of
experiment orchestration in ShadowStream is
shown in Figure 3.

Experiment orchestrator takes charge of
notifying a large number of clients in real-time
about their time to join and leave a testing
scenario according to the defined arrival rate
function λ()t and lifetime function L to gener-
ate the specified testing behavior scenario. And
the orchestration time line is illustrated in
Figure4, from which we can observe that other
than the real behavior time in physical world,
each testing client poses a virtual arrival/de-
parture time in experiment.

A striking feature of experiment orches-
tration in ShadowStream is having proposed
an effective, distributed algorithm where each
client can locally decide and control its arrival/
departure time. The theoretical basis to support
this algorithm is the theorem from Cox and
Lewis (Cox&Lewis, 1966), which proves that
we can generate event times by drawing random
numbers independently according to the same
distribution function without executing global
computation.

Although ShadowStream has overcome
the limitations in scale and in realism to some
extent, when compared with traditional evalu-
ation methods, there still exists room for more
improvements. Since our previous work about
experiment orchestrator in ShadowStream just
randomly notifies each client’s behavior time
by a distributed algorithm, without considering
its real behavior in physical world, which may
lead to a situation in Figure 5 that a client with
a relatively shorter lifetime in physical world
is expected to stay much longer in experiment,
while the other has virtually departed the test-
ing way ahead of its real departure time. And
we define those clients in the latter situation as
early-departed clients in experiment. Besides,
we used to focus on testing client’s departure
time in experiment, which later has been proved
to be unintuitive when taking viewers’ real
behavior into consideration since it is based

Figure 2. Streaming machine sliding download window in ShadowStream: (a) at t = 100 ; (b)
at t = 101

Figure 3. Components of experiment orchestration in ShadowStream system

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Web Services Research, 11(4), 67-83, October-December 2014 71

on their residual lifetime in physical world that
we make a prediction about the real behavior
scenario.

Thus we decide to draw our attentions to
lifetime distribution in the process of orches-
tration, and try to match each client’s virtual
lifetime in testing with its real residual lifetime
in physical world. In general, clients with a
relatively longer lifetime in physical world
should also have a longer virtual lifetime in
experiment.

3. BASIC IDEA

Considering that real viewers’ behavior in physi-
cal world mainly impacts the actual distribution
of lifetime in experiment, the key to achieve the

specific experimental scenario is matching it
with real viewers’ residual lifetime in testing.
Thus it requires us to be aware of each testing
viewer’s real residual lifetime and match it with
the desired distribution.

3.1. Expected Residual Lifetime

It is known that, in a peer-to-peer system, the
node lifetime can be approximated by a Pareto
distribution. To simplify the presentation, we
assume that a client’s lifetime is merely de-
pendent on its arrival time in physical world,
ignoring the influence of video quality for now.
That is to say, the longer a client has stayed in
channel, the longer it would stay in the future
(Bishop&Rao, 2006, pp. 1-13).

Figure 4. ShadowStream orchestration time line: real arrival, virtual arrival, virtual departure,
real departure

Figure 5. An awkward situation may appear in experiment control: the mismatch between view-
ers’ real departure time and virtual departure time

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

72 International Journal of Web Services Research, 11(4), 67-83, October-December 2014

At current time t , the Cumulative Distri-
bution Function F t

i
() of client i ’s lifetime can

be described by Pareto I()(,)σ α with positive
parameter σ ,α , and the distribution function
is:

F t
t

t

t
Ti
()

,

,

=
−

≥

<

−

1

0
σ

σ

σ

α

 (1)

where σ = − ′t ti , ′t
i

stands for the time when
client i arrives. Thus σ means the total time
it has spent in the channel by current time t .
And the residual lifetime probability function
P of client i can be described as follows:

P T t
t

t
i
() ,> =

≥
−

σ
σ

α

 (2)

where Ti is client i ’s lifetime.
According to Swartz (1973), the mean

residual lifetime function of a client that has
s u r v i v e d t o a t l e a s t t i m e t i s
V t E T t T t() ≡ − ≥{ }| . To be more spe-
cifically:

R t F t P T t
T() = − () = >()1 (3)

V t
R t

R x dx
t

() = () ()
∞

∫
1 (4)

Based on (1) (3) (4), the average remain-
ing lifetime is:

V t
t() =
−

>
α

α
1

1, (5)

Thus for client i who has survived to at
least time t in the channel, its probable depar-
ture time D t

i () can be presented as follows.

D t t t V ti i i() = ′ + + () (6)

3.2. Process of Matching

Now we give an example to illustrate the pro-
cess of sorting and matching in experiment
orchestration. In the example, we present the
desired lifetime distribution in a certain period
in Figure 6(a) by defining the expected number
of clients in each timescale, while in physical
world there exists four real viewers (A,B,C,D)
whose average residual lifetime is distributed
in the specific testing duration as described in
Figure 6(b). Comparing the desired and the real
lifetime distribution, we select three testing cli-
ents in physical world and present their residual
lifetime and the actual distribution after sorting
in experiment in Figure 6(c), which indicates
there still exists gaps with the desired scenario.
Thus it requires lifetime control to make client
D depart the testing ahead of its real departure
time to achieve the desired lifetime distribution
as illustrated in Figure 6(d).

4. ALGORITHM DESIGN

In this section, we explicitly introduce the
implementation of experiment orchestration
and describe relevant algorithms when taking
real viewers’ residual lifetime into account. To
further improve the utilization level, we make
those early-departed viewers can rejoin to the
experiment.

4.1. Triggering Condition

 Our previous work merely focuses on wheth-
er the number of stable clients in physical world
at any time t satisfies the desired behavior
scenario when it comes to the triggering condi-
tion. And it has greatly limited the scale of
testing as well as influenced the actual behav-

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Web Services Research, 11(4), 67-83, October-December 2014 73

ior scenario, since knowing that a client is
stable alone is not enough to predict its behav-
ior in near future. Thus, we decide to take each
client’s lifetime function Lx and the global
expected lifetime distribution φ t() into account
to redefine the triggering condition. The trig-
gered test starting time is referred to as t

start
,

and the test runs from t
start

 to t t
start
+

exp
.

To estimate the lifetime distribution in a
certain period, we divide testing duration

0,
exp
t

 into

t

t
exp

∆
 timescales, and denoted as

t t t t
t

ti i0 1 1
, ,..., , ,..., exp+ ∆

, where ∆t is the mini-

mum processing time. At any time t , orchestra-
tor predicts the number of active clients whose
residual lifetime V in physical world satisfies
t h e c o n d i t i o n

V t V t n
t

tn n
| , , ,..., exp< ≤{ } =

∆+1 0 1 , by a

simple extension of the autoregressive inte-
grated moving average (ARIMA) method
(Wu&Li, 2008) that uses both recent testing
channel states and the past history of it, and let
Predict t t

n
+() present the predicted value.

To obtain current testing channel states, the
orchestrator gathers channel state (arrivals and

departures) from clients’ low cost UDP reports.
The expected number of clients Exp t

n()whose

lifetime ranges from tn to t
n+1 in experiment

can be computed as follows:

Exp t x dxn t

t

n

n() = ()+

∫ φ1
 (7)

And our strategy is to analyze the gap
between the desired lifetime distribution in
experiment and real viewers’ residual lifetime
distribution in physical world to check whether
the testing can be triggered at current time or not.

At current time t , according to the differ-
e n c e v a l u e b e t w e e n Exp t

0() a n d

Predict t t+()0 , there exists two probable
cases:

1. Exp t Predict t t
0 0() ≤ +() ;

2. .. ;

In case (1), when the real value is greater
than expected, it is easy to single out Exp t

0()
real viewers for testing to achieve the desired
lifetime distribution during t t t t+ +[]0 1, .

Figure 6. Process of sorting and matching in experiment orchestration. (a) Desired lifetime
distribution in testing. (b)Real lifetime distribution in testing after sorting. (c) Actual lifetime
distribution in testing after sorting. (d) Actual lifetime distribution in testing after lifetime control.

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

74 International Journal of Web Services Research, 11(4), 67-83, October-December 2014

Then we carry on to inspect next timescale and
compute the difference between Exp t

1() and

Predict t t+()1 :

3. Exp t Predict t t1 1() ≤ +() ;

4. Exp t Predict t t
1 1() > +() ;

In case (4), when there has no adequate
viewers for desired lifetime distribution, we
make a further prediction to observe the num-
ber of production viewers whose residual
lifetime satisfying the condition V V t| >{ }2
at current time t in physical world to confirm
whether it is available to perform lifetime
control in experiment, and denote the predicted
value as predict t t+()2 :

Exp t Predict t t predict t t
1 1 2()− +() ≤ +()

(8)

If the value of Exp t0() is bigger than

Predict t t+()0 , just as case (2), we will pre-
dict the relationship between the difference
value and the number of viewers in physical
world with residual lifetime V V t| >{ }1 for
orchestration:

Exp t Predict t t predict t t
0 0 1()− +() ≤ +()

(9)

Only when (9) satisfies, we will move to
next timescale t t t t+ +[]1 2, . And still, there
exists two different possibilities after consider-
ing the influence of previous timescale:

5.
Exp t

Predict t t Exp t Predict t t
1

1 0 0

() ≤
+()− ()− +()()

;

6.
Exp t

Predict t t Exp t Predict t t
1

1 0 0

() >
+() − () − +()()

;

In case (6), further evaluation should be
made to ensure whether we can achieve the
desired lifetime scenario in period of
t t t t+ +

1 2

, by orchestrating to let some cli-
ents early-departed the testing, while case (5)
is just what the experiment expected, that is to
say:

Exp t Predict t t
Exp t

Predict t t

predic

1 1
0

0

() − +() −
() −

+()

≤ tt t t

Exp t Exp t predict t t

+

+
2

0 1 0

()
⇒ () + () ≤ ()

(10)

In subsequent timescales, all cases possible
are included in above analysis considering the
influence of previous timescale. Thus if all
conditions are satisfied in every timescale
until t

exp
, t can be triggered as t

start
 .

4.2. Independent Arrivals
Achieving Global Arrival Pattern

After the triggering condition, orchestrator
takes charge of selecting a certain number of
real viewers for testing according to the specific
lifetime distribution in experiment and adopts
an effective mechanism to compute the start
times of experiment in each client to create the
desired arrival scenario.

Previous research has clearly discussed
about how to conduct arrival control with
adequate stable viewers in testing channel
according to Cox-Lewis Law. But the reality
is far more complicated considering the small
percentage of stable clients shown in Figure 1.
Thus we make a further complement about the
distributed algorithm in ShadowStream, and it
aims at not only letting clients locally compute

its own virtual arrival time but also correlating

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Web Services Research, 11(4), 67-83, October-December 2014 75

the specific lifetime distribution with viewers’
residual lifetime in physical world. Besides, it
will be better if clients with a relatively shorter
residual lifetime have a earlier joining time in
testing, which reminds us to perform sorting
and arrival control based on clients’ lifetime.

According to (5), when α is assigned to
a specific value, each real viewers can inde-
pendently compute its average remaining
lifetime in physical world, based on the time it
has spent in the testing channel at t

start
. Hence

it is not difficult to count the number of clients
in each timescale, which denoted as
Real t tstart +() , t t∈

0,

exp
. In the process

of sorting, it helps to determine the certain
number of clients with different residual lifetime
by investing the distinction with the desired
behavior scenario in current and previous tim-
escale. Specifically, at duration t t t, + ∆[] the
total number of production viewers required in
experiment is not only determined by the spe-
cific lifetime scenario, but also includes some
additional viewers considering the difference
value between the desired and the real lifetime
distribution in previous timescale.

When considering the lifetime distribution
in current period, let p t() be the ratio of real
viewers required in experiment to the total
number of available real viewers in physical
world. If p t() <1 , which indicates adequate
real viewers for the specific experimental life-
time distribution and lifetime control in current
period, each client with V V t t| t < < +∆{ }
will independently participate in the scenario
with probability p t() , and compute its vir-
tual arrival time in experiment. And this leads
to a simple distributed algorithm shown in
Table 1.

4.3. Lifetime Control

In theory, lifetime control in ShadowStream
should be more intricate when compared with
arrival control due to the use of real viewers,
whose behavior in physical world seems to have

a greater influence on the actual lifetime dis-
tribution in experiment. However, in arrival
control, we have managed to sort out testing
clients in accordance with the desired lifetime
distribution, which, on the other hand, has
greatly relieved the pressure in the process of
lifetime control. More specifically, the purpose
of lifetime control is to make a certain number
of clients whose average residual lifetime V
satisfying the condition V V t t| > + ∆{ }

virtually depart the channel during t t t, +∆

 ,

when there exists inadequate testing clients for
the specific lifetime distribution in experiment,
and t t∈ 0, exp .

To make clients’ lifetime in experiment
matches the real scenario as much as possible,
we adopt the principle of proximity to pick out
testing clients to perform lifetime control. When
testing viewers’ residual lifetime cannot sat-
isfy the desired distribution in experiment,
orchestrator select a certain number of clients
that have the minimum residual lifetime differ-
ence with t t+∆() from a global view, based
on the UDP report from clients which includes
its average residual lifetime Vi . We define the
maximum residual lifetime as V

m
 among those

clients as an index in lifetime control. Mean-
while, the orchestrator computes q t() as the
ratio of the difference between the desired and
the real lifetime distribution in experiment to
the total number of testing clients with
V V V

m
| ≤{ } . The process of lifetime control

is introduced in Table 2.
Unlike the process of arrival control, we

don’t apply distributed algorithm to let testing
clients compute its own lifetime in experiment
once they join the testing, but choose to perform
lifetime control when necessary. Thus in the
process of lifetime control, we just manage to
deal with the case by shortening a certain number
of clients’ lifetime in experiment.

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

76 International Journal of Web Services Research, 11(4), 67-83, October-December 2014

Table 1. Algorithm combined with sorting and decentralized control for each client i to compute
arrival time a

e i,

Client i at t
start

:

02. Compute its mean residual lifetime Vi according to V
t

i
=
−α 1

Orchestrator:

02. Let Real t tstart +() be the total number of available clients with V t V t t| < ≤ +∆{ } in physical
world

03. Let Exp t x dx
t

t t
() = ()

+∆

∫ φ
04. Let dif t() be the difference value between the desired and the real lifetime duration in physical world until
time t

05. Let p t
Exp t dif t

Real t t
start

() = ()+ ()
+()

Check : if p t() >1,

06. Send t
start

, texp and λ t() to each client with V t V t t| < ≤ + ∆{ }
07. Set dif t t Exp t dif t Real t t

start
+∆() = ()+ ()− +()

Client i , upon receiving t
start

, texp and λ t() :

08. Draw waiting time ωi according to F t
t

t
() = ()

()
Λ

Λ
exp

09. Compute arrival time: a te i start i, = +ω
else,

06. Send t
start

, texp ,λ t() and p t() to each client with V t V t t| < ≤ + ∆{ }
07. Set dif t t+∆() = 0
Client i , upon receiving t

start
, texp ,λ t() and p t() :

08. if random p t() > () then return

09. Draw waiting time ωi according to F t
t

t
() = ()

()
Λ

Λ
exp

10. Compute arrival time : a te i start i, = +ω

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Web Services Research, 11(4), 67-83, October-December 2014 77

4.4. Stable Clients’ Rejoining

Our previous work is all based on an idea that
each client just participates in experiment
once. But in this section, we intend to take
full advantages of stable viewers in physical
world to let them rejoin the testing following
the expected behavior pattern once they have
virtually departed the experiment to further
increase real viewers’ utilization level.

To describe the status of a production
viewer, we introduce a Stability Index (
s Index−) (Wang&Liu, 2008) here to char-
acterize its degree of stability, denoted as SI .
Once the threshold of SI

thr
is defined from a

global perspective, the number of stable clients
M (SI SI

thr
≥) that are available for rejoin-

ing in physical world can also be determined.
When detecting an early-departed stable

client in experiment, orchestrator will imme-
diately perform distributed arrival algorithm
according to Cox-Lewis law and let it compute
its own arrival time for next testing. But on the
other hand, this method is largely confined to

the number of stable clients in physical world
and the specific behavior scenario we assigned.
To integrate the process of rejoining in experi-
ment, there are two key points concerned since
orchestration is executed based on lifetime: 1)
the time when the first stable testing client joins;
2) the time when the last unstable testing client
departs in testing. Those two event times can
be computed according to the desired arrival
rate function λ t() and the specific lifetime

distributionφ t() , denoted as ta , t
d

 respec-
tively. And at any time t , the value of stable
clients M in experiment should satisfy the
following conditions:

λ x dx M t t t
t

t

a d
a
() < ∀ ∈[]∫ , , (11)

λ φx dx x dx M t t t
t

t

t

t

d
d d

() − () < ∀ ∈

∫ ∫ , ,

exp

(12)

Table 2. Algorithm for those clients with V V Vm| <{ } to perform lifetime control and compute
residual lifetime V

i
.

Orchestrator:

01: Let Real t tstart′ +() be the total number of available clients with V t V t t| < ≤ +∆{ } in
experiment

02. if Real t t Exp t
start

′ +() ≥ () then return

03. Let dis t Exp t Real t tstart() = () − ′ +()
04. Assign the value of V

m
according to dis t()

05. Let Sum be the total number of clients with V V V
m

| ≤{ }
Client i V V

i m
≤() , upon receiving t

start
, texp , q t() and φ t() :

08. if random q t() > () then return

09. Draw waiting time θi according to ′ () = ()
()

F t
t

t

Φ

Φ
exp

10. Compute residual lifetime: V ti start i= +θ and refresh it

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

78 International Journal of Web Services Research, 11(4), 67-83, October-December 2014

5. EVALUATIONS

In this section, we conduct an evaluation of
experiment orchestration on MATLAB to testify
whether we can attain the expected behavior
pattern. Firstly, we evaluate the situation when
taking the process of matching in experiment
orchestration. Then we use relatively few but
stable viewers for testing and attempt to make
them rejoin the experiment to assess the perfor-
mance of the orchestrator. At last, we analyze
the utilization level of real viewers by applying
different algorithms.

5.1. Setting

To evaluate the experiment orchestration under
the specific lifetime distribution in physical

world, we assume that real viewers’ residual
lifetime obeys the Chi-square distribution with
120-freedom shown in Figure 7(a) according
to (5) when α = 2 (for simplicity), with the
testing duration t Hour

exp
= ()2 . Besides we

define a target arrival rate function shown in
Figure 7(b), which has 348,618 arrivals when
instantiated in ShadowStream, and a lifetime
distribution in Figure 7(c),

5.2. Evaluation with Matching

Here we make an evaluation of the experiment
orchestrator by matching each client’s residual
lifetime in physical world with the specific
behavior pattern.

And the difference between the target and
the actual arrival/lifetime scenario resulting

Figure 7. The gap between the expected and the actual behavior scenario by performing arrival/
lifetime control. (a) Lifetime distribution in physical world. (b) Difference between the target
arrival pattern and the real by performing distributed control. (c) Difference between the target
lifetime distribution and the real by performing lifetime control.

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Web Services Research, 11(4), 67-83, October-December 2014 79

from orchestration in experiment is presented
in Figure 7(b) and Figure 7(c) respectively. We
can see that it is possible to fill the gap by the
process of matching, which means there is no
early-quitted client in experiment.

It should be noted that in real live-streaming
networks, predictions about real viewers’
behavior in the near future have no way to be
100% accurate considering that a client may
depart due to insufficient streaming quality
or some uncertain factors, which is hard to
direct model. Thus, in a live-testing streaming
network, replacement is inevitable even the
evaluation outcome shows no necessary for it.

5.3. Evaluation with Stable
Clients’ Rejoining

To better understand the trade-off in the process
of rejoin, we present the minimum number of
real viewers required in physical world and the
average rejoining times for testing clients under
different value of SIthr in Figure 8. And it
apparently shows that the total number of real
viewers required in physical world increases
as the increment ofSI

thr
, while the average

replacement times in experiment decreases.

At first, we define SIthr = 0 67. , which
means only those clients whose SI

thr
≥ 0 67.

are stable enough for rejoining in experiment.
The outcome is shown in Figure 9(a) and Fig-
ure 9(b). And it is clear to see that, gap between
the target and the actual arrival scenario is small
enough to be negligible, while there exists
significant difference between the desired and
the actual lifetime distribution in experiment.
Thus in this situation, it requires some more
real viewers in physical world to replace those
early-quitted clients in the process of experi-
ment.

Then we redefine SIthr =1 and present
the actual lifetime distribution in experiment
in Figure 9(c). And it shows that the gap is
closed when comparing with Figure 9(b), which
indicates that the average replacement times in
experiment is significantly decreased.

5.4. Performance Comparison

Having observed the gap between the desired
and the real behavior scenario to inspect the
probable replacement times in experiment, we
make a further evaluation to observe real view-
ers’ utilization level in physical world, which

Figure 8. Trade-off between the minimum real viewers required and average replacement times
in the process of stable clients’ rejoining. (a) Minimum number of real viewers required under
different value of SIthr . (b) Average number of replacement times under different value of SI

thr
.

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

80 International Journal of Web Services Research, 11(4), 67-83, October-December 2014

will affect the scale of experiment to a large
degree. Since the behavior scenario is specified,
we use the minimum value of real viewers M

min

required in physical world whose real residual
lifetime satisfies the distribution illustrated in
Figure 9(a) to describe the utilization level in
experiment, and the result is shown in Table 3,
which manifests when considering matching
in experiment the required number of viewers
in physical world has nearly reduced by half
compared with our previous research. By mak-
ing stable clients rejoin the testing, real viewers’
utilization level is further improved based on
the value of SIthr . Specifically, in average

replacement times equal circumstances, M
min

has been decreased from 360,018 to 353,700
after taking full advantages of stable clients in
experiment.

By making a comparison among the results
including the average replacement times in
experiment as well as the minimum value of
real viewers required in physical world, it is not
hard to draw an conclusion that by perform-
ing matching and rejoining in the process of
orchestration, real viewers’ utilization level is
obviously improved when minimum average
replacement times is ensured.

Figure 9. The gap between the expected and the actual behavior scenario by letting stable clients
in experiment rejoin the testing with a new identity. (a) Difference between the target arrival
pattern and the real by making stable clients rejoin with SI t

thr
= 0 67.

exp
i . (b)Difference between

the target lifetime distribution and the real by making stable clients rejoin with SI tthr = 0 67. exp .
(c) Difference between the target lifetime distribution and the real by making stable clients rejoin
with SI t

thr
=

exp
.

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Web Services Research, 11(4), 67-83, October-December 2014 81

6. CONCLUSION

The limitation of the original ShadowStream
system is that only stable streaming viewers
can be selected for entering the live testing.
This significantly limits the scale of tests. In
this paper, a novel distributed client lifecycle
control method is developed. By matching the
desired scenario with real viewers’ behaviors,
we demonstrate that the scale of experiments
can be doubled.

ACKNOWLEDGMENT

The authors would like to thank anonymous
reviewers for their valuable comments. This
work is partially supported by “National Natural
Science Foundation of China (No. 61202107,
No. 61100220, No. 61202303)”, by “National
High Technology Research and Develop-
ment Program of China (863 Program No.
2014AA01A702)” and by the “Fundamental
Research Funds for the Central Universities”.
Chen Tian is the corresponding author.

Table 3. Clients’ utilization level

 Scenario Minimum Value

Orchestration without matching or rejoining (SIthr =1) M
min

,= 698 238

 Orchestration with matching Mmin ,= 360 018

Orchestration with matching and rejoining (SI
thr
= 0 67.) Mmin ,= 34 135

Orchestration with matching and rejoining (SI
thr
= 1) M

min
,= 353 760

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

82 International Journal of Web Services Research, 11(4), 67-83, October-December 2014

REFERENCES

Banerjee, S., Bhattacharjee, B., & Kommareddy, C.
(2002). Scalable application layer multicast: Vol. 32.
No. 4 (pp. 205–217). ACM.

Bavier, A., Feamster, N., Huang, M., Peterson, L.,
& Rexford, J. (2006, September). In VINI veritas:
Realistic and controlled network experimentation.
[). ACM.]. Computer Communication Review, 36(4),
3–14. doi:10.1145/1151659.1159916

Bishop, M. A., Rao, S. G., & Sripanidkulchai, K.
(2006, April). Considering Priority in Overlay
Multicast Protocols Under Heterogeneous Envi-
ronments (pp. 1–13). INFOCOM. doi:10.1109/
INFOCOM.2006.140

Bonald, T., Massoulié, L., Mathieu, F., Perino, D.,
& Twigg, A. (2008, June). Epidemic live stream-
ing: Optimal performance trade-offs. [). ACM.].
Performance Evaluation Review, 36(1), 325–336.
doi:10.1145/1384529.1375494

Castro, M., Druschel, P., Kermarrec, A. M., Nandi,
A., Rowstron, A., & Singh, A. (2003, October). Split-
Stream: High-bandwidth multicast in cooperative
environments. [). ACM.]. Operating Systems Review,
37(5), 298–313. doi:10.1145/1165389.945474

Chang, H., Jamin, S., & Wang, W. (2009, November).
Live streaming performance of the Zattoo network. In
Proceedings of the 9th ACM SIGCOMM conference
on Internet measurement conference (pp. 417-429).
ACM. doi:10.1145/1644893.1644944

Chun, B., Culler, D., Roscoe, T., Bavier, A., Peter-
son, L., Wawrzoniak, M., & Bowman, M. (2003).
Planetlab: An overlay testbed for broad-coverage
services. Computer Communication Review, 33(3),
3–12. doi:10.1145/956993.956995

Cisco, I. (2012). Cisco visual networking index:
Forecast and methodology, 2011--2016. CISCO
White paper, 2011-2016.

Cox, D. R., & Lewis, P. A. (1966). The statistical
analysis of series of events.Monographs on Applied
Probability and Statistics, London: Chapman and
Hall, 1966, 1.

Dischinger, M., Haeberlen, A., Beschastnikh, I., Gum-
madi, K. P., & Saroiu, S. (2008, August). Satellitelab:
Adding heterogeneity to planetary-scale network
testbeds. [). ACM.]. Computer Communication Re-
view, 38(4), 315–326. doi:10.1145/1402946.1402994

Kim, M. S., Kim, T., Shin, Y., Lam, S. S., & Powers, E.
J. (2004). A wavelet-based approach to detect shared
congestion: Vol. 34. No. 4 (pp. 293–306). ACM.

Li, B., Xie, S., Qu, Y., Keung, G. Y., Lin, C., Liu, J.,
& Zhang, X. (2008, April). Inside the new coolstream-
ing: Principles, measurements and performance
implications. In INFOCOM 2008. The 27th Confer-
ence on Computer Communications. IEEE. IEEE.

Magharei, N., & Rejaie, R. (2009). Prime: Peer-to-
peer receiver-driven mesh-based streaming. [TON].
IEEE/ACM Transactions on Networking, 17(4),
1052–1065. doi:10.1109/TNET.2008.2007434

Picconi, F., & Massoulié, L. (2008, September). Is
there a future for mesh-based live video streaming?
In Peer-to-Peer Computing, 2008. P2P’08. Eighth
International Conference on (pp. 289-298). IEEE.
doi:10.1109/P2P.2008.18

Sundaresan, S., De Donato, W., Feamster, N., Teix-
eira, R., Crawford, S., & Pescapè, A. (2011, August).
Broadband internet performance: A view from the
gateway. [). ACM.]. Computer Communication Re-
view, 41(4), 134–145. doi:10.1145/2043164.2018452

Swartz, G. B. (1973). The mean residual lifetime
function. Reliability. IEEE Transactions on, 22(2),
108–109.

Tian, C., Alimi, R., Yang, Y. R., & Zhang, D. (2012,
August). ShadowStream: performance evaluation as
a capability in production internet live streaming net-
works. In Proceedings of the ACM SIGCOMM 2012
conference on Applications, technologies, architec-
tures, and protocols for computer communication
(pp. 347-358). ACM. doi:10.1145/2342356.2342430

Wang, F., Liu, J., & Xiong, Y. (2008, April). Stable
peers: Existence, importance, and application in peer-
to-peer live video streaming. In INFOCOM 2008.
The 27th Conference on Computer Communications.
IEEE. IEEE.

White, B., Lepreau, J., Stoller, L., Ricci, R., Guru-
prasad, S., Newbold, M., ... & Joglekar, A. (2002). An
integrated experimental environment for distributed
systems and networks. ACM SIGOPS Operating
Systems Review, 36(SI), 255-270.

White, B., Lepreau, J., Stoller, L., Ricci, R., Guru-
prasad, S., Newbold, M., ... & Joglekar, A. (2002). An
integrated experimental environment for distributed
systems and networks. ACM SIGOPS Operating
Systems Review, 36(SI), 255-270.

Wu, C., Li, B., & Zhao, S. (2008, April). Multi-
channel live p2p streaming: Refocusing on servers. In
INFOCOM 2008. The 27th Conference on Computer
Communications. IEEE. IEEE.

http://dx.doi.org/10.1145/1151659.1159916
http://dx.doi.org/10.1109/INFOCOM.2006.140
http://dx.doi.org/10.1109/INFOCOM.2006.140
http://dx.doi.org/10.1145/1384529.1375494
http://dx.doi.org/10.1145/1165389.945474
http://dx.doi.org/10.1145/1644893.1644944
http://dx.doi.org/10.1145/956993.956995
http://dx.doi.org/10.1145/1402946.1402994
http://dx.doi.org/10.1109/TNET.2008.2007434
http://dx.doi.org/10.1109/P2P.2008.18
http://dx.doi.org/10.1145/2043164.2018452
http://dx.doi.org/10.1145/2342356.2342430

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Web Services Research, 11(4), 67-83, October-December 2014 83

Yin, H., Liu, X., Zhan, T., Sekar, V., Qiu, F., Lin, C.,
. . . Li, B. (2009, October). Design and deployment
of a hybrid CDN-P2P system for live video stream-
ing: experiences with LiveSky. In Proceedings of the
17th ACM international conference on Multimedia
(pp. 25-34). ACM.

Yin, H., Liu, X., Zhan, T., Sekar, V., Qiu, F., Lin, C.,
. . . Li, B. (2009, October). Design and deployment
of a hybrid CDN-P2P system for live video stream-
ing: experiences with LiveSky. In Proceedings of the
17th ACM international conference on Multimedia
(pp. 25-34). ACM.

Zhou, Y., Chiu, D. M., & Lui, J. C. (2007, October).
A simple model for analyzing P2P streaming proto-
cols. In Network Protocols, 2007. ICNP 2007. IEEE
International Conference on (pp. 226-235). IEEE.
doi:10.1109/ICNP.2007.4375853

http://dx.doi.org/10.1109/ICNP.2007.4375853

	Instructions
	Masthead
	Table of Contents
	Improve Distributed Client Lifecycle Control in ShadowStream

