
SpiderMon: Towards Using Cell Towers as
Illuminating Sources for Keystroke Monitoring

Kang Ling, Yuntang Liu, Ke Sun, Wei Wang, Lei Xie and Qing Gu
State Key Laboratory for Novel Software Technology, Nanjing University
{lingkang,yuntangliu,kesun}@smail.nju.edu.cn, {ww,lxie,guq}@nju.edu.cn

Abstract—Cellular network operators deploy base stations
with a high density to ensure radio signal coverage for 4G/5G
networks. While users enjoy the high-speed connection provided
by cellular networks, an adversary could exploit the dense
cellular deployment to detect nearby human movements and
even recognize keystroke movements of a victim by passively
listening to the CRS broadcast from base stations. To demonstrate
this, we develop SpiderMon, the first attempt to perform passive
continuous keystroke monitoring using the signal transmitted by
commercial cellular base stations. Our experimental results show
that SpiderMon can detect keystroke movements at a distance of
15 meters and can recover a 6-digits PIN input with a success
rate of more than 51% within ten trials when the victim is behind
the wall.

I. INTRODUCTION

Keystroke inference attacks are extremely dangerous since
the attacker could infer the content or even passwords typed
by the user through side-channels that can hardly be detected.
Existing works have used videos [1], [2], Inertial Measurement
Units (IMU) [3], [4], and sound signals [5]–[9] in side-channel
attacks that effectively infer the keystroke sequence, see Table
I. Recently, researchers discovered that Wi-Fi radio signals can
also be used as the medium for keystroke inference attacks
[10]–[13]. However, most of these existing attack models are
short-ranged or requires active signal transmission.

In this paper, we first show that an attacker can passively
listen to the commercial 4G/5G signals and infer the keystroke
sequence of a victim at a distance of 15 meters (Figure 1). As
cellular network operators are using high-density deployments
to improve radio signal coverage for 4G/5G networks, such
attacks could be pervasive in the near future. Currently, for
outdoor areas, macro/micro Base Stations (BSs) are deployed
with a high density of more than 0.3 BS/km2 in urban regions
[14]. For indoor areas, radio repeaters and femtocells are
deployed in most buildings to improve the radio signal quality
[15]. As envisioned by the Ultra-Dense Networks (UDN) in
5G networks, the distance between cellular access points could
be a few meters for indoor deployments and 50 meters for
outdoor deployments [16]. While users enjoy the high-speed
connections provided by 4G/5G cellular networks, such dense
cellular deployment leads to severe information leakage issues
that most users are unaware of.

The cellular signal is a new type of side-channel attack
medium that could be more harmful than Wi-Fi signals. First,
cellular-based attackers are passive listeners. They use the
signal transmitted by commercial cellular BSs as the “illumin-

LTE base 
station

Attacker

Figure 1. SpiderMon leverage cellular base stations as illuminating sources
for passive keystroke monitoring.

ating sources”. Therefore, it is harder to detect these attackers
since they do not transmit any signal. Second, cellular signals
have larger coverage areas than Wi-Fi signals. Compared to
Wi-Fi APs that are mostly installed in buildings, cellular
signals cover both outdoor and indoor areas. Third, cellular
BSs provide highly stable reference signal sources. Cellular
BSs use GPS-regulated oscillators and low-noise amplifiers
to generate Cell-Specific Reference Signal (CRS) at a regular
rate of up to 4,000 times per second, which are more stable in
both the phase and the amplitude than the signals generated by
low-end Wi-Fi devices. Finally, Wi-Fi transmissions could be
easily blocked since they use Carrier-Sense Multiple Access
(CSMA) protocols. However, it is against FCC regulations
to interfere with cellular transmissions. Thus, users cannot
protect themselves by transmitting an interfering signal, as
suggested in PhyCloak [17].

We develop SpiderMon1, a system that performs long-
range keystroke monitoring using the signal transmitted by
commercial cellular BSs. The design of SpiderMon faces three
technical challenges. First, capturing the subtle changes caused
by the keystroke movements at a distance of 15 meters is chal-
lenging. To address this challenge, we first use a directional
antenna to amplify the signal reflected by the victim, as well
as reducing the interferences of nearby movements. We then
design a block Principal Component Analysis (PCA) algorithm
that further amplifies the signal by combining signals in
different subcarriers. Second, it is challenging to infer the
keystroke sequence of a continuous typing process, where
the victim types in a natural manner by continuously moving
from one key to the next. Existing works treat each keystroke

1We name the system as SpiderMon because it monitors the victim by the
small disturbance of a time-frequency grid formed by LTE CRS as shown in
Figure 2(d), just as a spider that uses its web to detect the prey.



Table I
COMPARISON AMONG SIDE-CHANNEL BASED KEYSTROKE INFERENCE METHODS.

System Attack Distance Side-Channel Signal Passive Listening Continues Typing NLOS
Owusu et al. [3] On device IMU (Smartphone) Yes Yes /

Liu et al. [4] Wearable IMU (Smartwatch) Yes Yes /
Shukla et al. [1] 5 meters Video Yes Yes No

Sun et al. [2] 2 meters Video Yes Yes No
Asonov et al. [8] 1 meter Acoustic Yes Yes /

Zhu et al. [6] 40 centimeters Acoustic Yes Yes /
Wikey [10] 30 centimeters Wi-Fi No No Yes

WindTalker [12] 1.5 meters Wi-Fi No No Yes
SpiderMon 5∼15 meters LTE Yes Yes Yes

separately by assuming that the user always returns to a
given posture after each keystroke [10]. To handle continuous
typing, we model the process as a Hidden Markov Model
(HMM) and use the LTE signal to infer the transition between
subsequent keystrokes. Third, the LTE signal contains both
data transmission and reference signals so that the raw data
rate is 122.88 MBytes per second, which makes real-time
data processing and logging a challenge. To enable long-term
monitoring, we build a signal processing frontend running on
a workstation that compresses the measurements to a rate of
800 kBytes per second so that the results can be efficiently
processed and stored in real-time for hours.

Our experimental results show that SpiderMon can detect
95% keystrokes at a distance of 15 meters. When the victim
is behind the wall at a distance of 5 meters, SpiderMon can
recover a 6-digits PIN input with a success rate of more than
51% within ten trials and this accuracy is above 36% at 15
meters with line-of-sight.

In summary, we have made the following contributions:
• To the best of our knowledge, we are the first to show

that commercial 4G/5G cellular signals can be used for fine-
grained human activity monitoring.
• We build a real-time cellular signal analysis system

with Commercial Off-The-Shelf (COTS) USRP devices and
workstations. Our system can process commercial LTE signals
with a bandwidth of 20 MHz and extract 4, 000 × 200 CRS
samples per second in real-time.
• We propose to leverage the HMM to infer continuous

keystroke sequences. Our extensive evaluations on keystroke
sequence inference show that this method outperforms the
traditional individual keystroke recovery scheme.

II. RELATED WORK

We divide the existing related work into the following four
areas: LTE physical layer measurements, Radio Frequency
(RF) based activity monitoring systems, keystroke inference
attacks, and protection against RF-based attacks.

LTE Physical Layer Measurements: Existing LTE phys-
ical layer measurement tools mainly focus on the networking
or ranging problem. LTE physical layer information, such
as the Channel Quality Indicator (CQI), can be used in
cross-layer design to improve TCP throughput of the cel-
lular network [18], [19]. The real-time LTE radio resource
monitor (RMon) extracts the PHY-layer resource allocation
information to help LTE video streaming [20]. LTEye uses
USRP N210 to decode LTE signal with a bandwidth of 10

MHz and to perform user localization [21]. Soft-LTE uses the
Sora software-radio to implement the LTE uplink with a full
bandwidth but does not implement the downlink [22]. Marco
et al. [23] proposed a method for extracting TOA information
from LTE CIR signals and achieved 20 meters accuracy for
vehicular position tracking. However, most of these systems
[20], [21], [24] do not support real-time operations on the full
20 MHz LTE bandwidth.

RF-based Activity Monitoring Systems: Different types
of RF signals, including Wi-Fi [25]–[28], FMCW radar [29],
[30], 60GHz radar [31], [32], and RFID [33], [34], have
been used for human activity monitoring. Most of the above
RF-based attacks require an active transmitting device to be
placed around the victim. There are systems that use signals
transmitted by GSM BSs to perform through wall monitoring
[35]. However, GSM-based systems only extract the coarse-
grained Doppler shift data, while LTE-based systems can
measure the signal phase with high accuracy.

Keystroke Inference Attacks: Existing keystroke inference
attacks use different types of sensors to capture the keystroke
signal, including sound [5]–[8], IMU [3], [4], video [1],
[36], and RF signals [10], [12], [13]. Asonov et al. [8] first
demonstrated that different keys can be distinguished by their
unique typing sounds. Zhuang et al. [7] and Berger et al. [37]
improved keystroke recognition accuracy by adding a language
model. Liu et al. [4] achieved 65% inference accuracy in
top-3 candidates using the IMU on a smartwatch. Sun et
al. [36] detected and quantified the subtle motion patterns of
the back of the device induced by a user’s keystrokes using
videos. WiPass [13] and WindTalker [12] further uses the
Wi-Fi CSI to snoop the unlock patterns and PINs on mobile
devices. However, these methods have their own shortcomings.
Sound and Wi-Fi-based methods tend to work only in limited
distances. IMU-based solutions need to crack the victim’s
wearables, while video-based solutions are limited by lighting
conditions and obstructions such as ATM keyboard cover.

Protection against RF-based Attacks: Most of exist-
ing privacy protection systems transmit interfering signals
to prevent attackers from measuring key RF parameters
that are vital for activity recognition. PhyCloak [17] lever-
age an RF signal-relay to disturb the amplitude, delay,
and Doppler shift of the signal received by the attacker
so that they cannot reliably infer the activity of the user.
Aegis [38] uses randomized amplifications, fan movements,
and antenna rotations to distort the same set of RF sig-
nal parameters. However, these protection schemes actively



transmit signals in the targeting frequency band so that
they cannot be applied to cellular-based attacks, as it is
against FCC regulations to transmit interfering signals in the
licensed band.

III. ATTACK SCENARIO AND LTE BACKGROUND

In this section, we first present the attack scenario of our
system. We then introduce the background of LTE system and
discuss its protocol design with a focus on downlink Cell-
Specific Reference Signals (CRS).

A. Attack Scenario

We consider an attack scenario where the adversary attempt
to infer the PIN code of a user when he/she inputs it on an
ATM or a smart lock door. The adversary may not have direct
access to the target, but can deploy equipments at a distance of
5∼15 meters, e.g., from a building across the road or behind
a nearby wall. We assume that there is at least one LTE base
station within a distance of 150 meters to the victim. The LTE
coverage could be provided by a macro-cell or an indoor small
cell. This requirement usually can be fulfilled in most urban
areas. By passive listening to the LTE signal reflected by the
victim, the adversary may infer the PIN input by the victim
using a probability model.

B. LTE Primer

We give a brief introduction to the LTE signal format and
show how LTE signals form a time-frequency grid that can
be used for human activity monitoring. Note that the 5G
cellular system uses a similar OFDM modulation scheme and
frame structure as in the LTE system. Therefore, most of the
following discussion applies to both 4G and 5G systems.

Time Domain: In the time domain, LTE BSs transmit
radio frames that have a fixed duration of 10ms. Each frame
contains ten subframes with a duration of 1ms and each
subframe contains two slots of 0.5ms. Depending on the
configuration of the BS, each slot consists of six (in case
of extended cyclic prefix) or seven (in case of normal cyclic
prefix) OFDM symbols which have durations of 66.67µs.

Frequency domain: In the frequency domain, the OFDM
symbol contains a series of subcarriers with a frequency
interval of ∆f = 15 kHz, as in Figure 2(b). The commonly
used bandwidths for LTE signals are 5, 10 and 20 MHz, which
consist of 300, 600, and 1200 subcarriers, respectively.

Time-Frequency Grid: The radio resources in LTE are
scheduled in units called Resource Blocks (RBs), which
consists of NRB

SC =12 subcarriers in the frequency domain
and lasts one slot (0.5ms) in the time domain, as in Figure
2(c). The LTE BS transmits the Cell-Specific Reference Signal
(CRS) in all downlink RBs. The CRS is transmitted at four
different locations in each RB with two CRS separated by
six subcarriers in each of the two predefined symbols, as in
Figure 2(c). Therefore, the CRS forms a dense time-frequency
grid at fixed time and frequency intervals. For example, a
Time Division Duplex (TDD) base station that has NDL

RB =100
RBs (20 MHz bandwidth) will transmit CRS at 200 different

0.5ms 0.5ms

10ms 10ms 10ms

One frame

One subframe

One slot

OFDM symbol

OFDM symbol
Extended 
CP

Normal 
CP

#1 #2 #3 #4 #5 #6 #7 #8 #9#0

(a) Time domain: frames, subframes, slots and symbols.

… …

Unused DC subcarrier

One resource block (12 subcarriers)

Frequency

∆𝑓 ൌ 15𝑘𝐻𝑧

(b) Frequency domain: subcarriers and resource blocks.

… …

frequency
sy

m
bo

l
Resource 
Block

Reference 
Symbols

𝑁ோ
 ൈ 𝑁ௌ

ோ 𝑠𝑢𝑏𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑠

𝑁ௌ
ோ ൌ 12 𝑠𝑢𝑏𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑠

(c) Each slot contain NDL
RB RB, each RB contain 12 subcarriers

in the frequency domain, and 0.5 ms in the time domain.

(d) CRS (shown as small dots) and PSS/SSS for a commercial
TDD base station (subcarriers around the DC subcarrier).

Figure 2. Illustration of the time-frequency grid of LTE reference signals.

subcarriers on two symbols in each slot (0.5 ms). Figure 2(d)
shows the CRS grid captured from a commercial TDD base
station. Note that for TDD, there are some time slots reserved
for uplink so that the BS does not transmit in these slots.
In our experiments, the BS transmits in 14 slots in the 20
slots of each frame so that the CRS is sent in 2,800 symbols
(100 frames × 14 slots × 2 symbols) per second, and 200
subcarriers (100 RB × 2 subcarriers) per symbol.

C. CRS as a Side Channel

In LTE systems, the User Equipments (UEs), e.g., mobile
phones, use the CRS to estimate the Channel Frequency Re-
sponse (CFR) of the downlink channel. The transmitted value
of CRS is predefined in the LTE protocol [39] determined by
the Physical Cell ID (PCI) and slot number. Suppose that the
BS transmits S(f, t) on a given subcarrier f at a given time t.



Synchronization

CFO & SFO 
Calibration

CRS Extraction

CRS Logger

CFR
LTE

Baseband Noise Removal

Block Principal 
Component 

Analysis

Preprocessing

Keystroke Detection

Shape Extraction

Keystroke Sequence 
Recovery

Keystroke Inference

30.72M samples
per second

200*4k samples
per second

10*4k samples
per second

Reduced
CFR

Direction 
Classification

Pre-build HMM

Figure 3. System overview of SpiderMon.

0 5 10 15 20 25 30 35 40 45
Time (s)

6.5

7

7.5

8

8.5

9

C
FR

 A
m

pl
itu

de

1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4

Omni Antenna
Directional Antenna

Figure 4. Omnidirectional and Directional an-
tenna comparison.

In case that the received signal at the UE is R(f, t), the CFR
can be calculated by:

H(f, t) =
R(f, t)

S(f, t)
. (1)

Signals received by the antenna is a superposition of trans-
mitted signal from multiple paths [40]. Suppose a radio signal
arrives at the receiving antenna through K different paths, then
the CFR can be given as:

H(f, t) =

K∑
k=1

ak(f, t)e−j2πfτk(t), (2)

where ak(f, t) represents the attenuation and initial phase
offset of the kth path, e−j2πfτk(t) is the phase shift on the kth

path, and τk(t) is the path delay. With this model, the nearby
human movements can be reflected in CFR measurement
fluctuations based a similar model as in Wi-Fi systems [25],
[27], [41].

IV. SYSTEM DESIGN

The structure of SpiderMon is shown in Figure 3. The LTE
baseband signal is captured by USRP B210 software radio
front-end and transferred to a hosting workstation using a USB
3.0 interface. We use the standard 30.72 MHz sampling rate
where each sample is a complex number with two-bytes real
and imaginary parts. Then we use CRS Logger implemented in
C++ to extract CRS and CFR estimations at a rate of 4000×
200 complex samples per second. At last, the CFR estimations
are transmitted to a Data Preprocessing module which uses
MATLAB to analyze and visualize the CRS in real-time.

A. CRS Logger

The CRS Logger consists of three components: synchron-
ization, CFO/SFO calibration, and CRS extraction.

Synchronization: The first step for synchronization is to
find the carrier frequency of a nearby LTE BS and tune the
USRP to its carrier frequency. This could be done by scanning
the entire LTE frequency band or using a smartphone in the
engineering mode to get the U-ARFCN codes, which indicate
the carrier frequencies used by neighboring BSs. The second
step is searching for the Primary Synchronization Signal (PSS)
to find the boundary of the subframes and symbols. This step
uses a computational intensive cross-correlation operation over
the whole frame to match the PSS, but it is only performed
at the searching stage. After the first searching stage, we only

need to perform cross-correlation within five samples of the
expected PSS location to keep track of the PSS. The third step
is searching for the Secondary Synchronization Signal (SSS)
and extract the Physical Cell ID (PCI). We use the location
of the detected PSS to capture the SSS and calculate the PCI
using both the PSS and SSS.

CFO/SFO Calibration: As the transmitting BS and the
receiver run at different clocks, there are both Carrier Fre-
quency Offset (CFO) and Sampling Frequency Offset (SFO)
in the received baseband signal [42], [43]. If we do not
calibrate these frequency offsets, they may accumulate and
the system will loose synchronization after several minutes
of continuous monitoring. We first use a high-quality clock
source (OctoClock CDA-2990) that has a frequency accuracy
of 25 ppb to keep the CFO between our receiver and the
transmitting BS to be smaller than 100 Hz. However, there
are still considerable residual phase offsets caused by CFO
and SFO in the CFR. The residual phase offset at a subcarrier
f can be modeled as [42], [43]:

ϕ(f, t) = θ(f, t) + 2πtδCFO +
2πt(f − fc)

fs
δSFO, (3)

where θ(f, t) is the combination of the initial phase and the
phase change caused by the activity. The last two components
are phase offsets caused by the CFO and SFO.

For the CFO calibration, we use the phase of the center
subcarrier to estimate δCFO since it always has an SFO of zero
[42]. We use linear regression over the phase history of the
center subcarrier with a duration of one second to estimate the
current δCFO. We then use an Exponential Moving Average
(EMA) to further smooth the CFO estimation over consecutive
seconds. After that, we compensate the CFO on all baseband
samples using the smoothed CFO estimation by multiplying
the baseband signal with an estimated phase shift.

The SFO is caused by sampling clock differences between
the transmitter and the receiver. For the SFO calibration,
we track the SFO by locating the cross-correlation peak of
the PSS. To correct the sampling offsets, we either skip a
single sample or duplicate a sample so that the sampling
point of the receiver is moved by one sample in the opposite
direction. With CFO/SFO calibration, we can keep the system
synchronized for a long duration (several hours).

CRS Extraction: Based on the PCI obtained from the
synchronization step, we can calculate in which subcarriers
the CRS are transmitted as well as the value of the CRS [39].



0 2 4 6 8 10 12 14 16 18 20
Time (s)

12

14

16

18

20

C
FR

 A
m

pl
itu

de

(a) CFR signals in different subcarriers, from top to bottom:
#1 ∼ #5, #81 ∼ #85, and #181 ∼ #185.

0 2 4 6 8 10 12 14 16 18 20
Time (s)

20

30

40

B
lo

ck
 P

C
A

Sub #1~#20
Sub #81~#100
Sub #181~#200

(b) Block PCA results. The first principal components cor-
respond to subcarriers #1 ∼ #20, #81 ∼ #100, and
#181 ∼ #200.

Figure 5. Performance of the block PCA algorithm.

After that, we calculate the CFR estimation for each symbol
and subcarrier based on Eq. (1).

B. Data Preprocessing

The Data Preprocessing module takes the CFR values and
performs the following two steps: noise removal and block
principal component analysis.

Noise Removal: We first reduce the impact of multi-path
interference by directional antennas. Compared to omnidirec-
tional antennas, directional antennas amplify signals in the
beam direction and reject signals in other directions. Figure
4 compares the CFR captured by a directional antenna and
an omnidirectional antenna at one of the 200 subcarriers
at a distance of 10 meters. Due to the high noise level,
the keystroke movements are submerged in the noisy signal
collected by the omnidirectional antenna. But, with the help
of the directional antenna, we can easily determine the CFR
variations corresponding to each keystroke event.

The raw signals captured by directional antennas are still
distorted by high-frequency noises. As the hand/finger move-
ments in keystroke input induce CRS variations with frequen-
cies between 2 ∼ 30 Hz [12], we then use a moving-average
filter to remove the high-frequency noises. Figure 5(a) shows
the signal after the low-pass filter at selected subcarriers.

Block Principal Component Analysis: Most of the CFR
samples are redundant, so they introduce unnecessary com-
putational costs in the keystroke recognition stage. We use
PCA (Principal Component Analysis) to extract most prin-
cipal components from raw CFR signals. Figure 5(a) shows
the waveform of different LTE subcarriers, we can clearly
observe that signals between distant subcarriers have smaller
correlations. Based on this observation, we first divide 200
subcarriers into 10 blocks, then each block performs PCA
and takes the first principal component. Thus, the block PCA
algorithm outputs ten principal components. Figure 5(b) shows
an example of block PCA results in three blocks, where we can
clearly observe the keystroke events. Compare to traditional
PCA performed directly on overall 200 subcarriers, block PCA
can reserve more representative information while squeezing

0 2 4 6 8 10
Time (s)

-5

0

5

N
or

m
al

iz
ed

 A
m

pl
itu

de

8 7 0 9 5

PCA #2
PCA #4
PCA #6
PCA #8
PCA #10

(a) Principal components

0 2 4 6 8 10
Time (s)

0

0.5

1

1.5

2

M
ov

in
g 

V
ar

ia
nc

e

10-3

8 7 0 9 5

variance
smooth variance
keystroke time
start point
end point

(b) Keystroke detection result
Figure 6. Keystroke detection with smooth variance of the block PCAs.

the data size. Figure 15(b) shows that using block PCA has
about 8% performance improvement over traditional PCA.

V. KEYSTROKE MONITORING

In the keystroke monitoring attack, the adversary points the
antenna towards the victim (ensure that the target is within
the receiving angle of the directional antenna) while he/she
is typing in order to intercept the typing content. We focus
on attacking the keystrokes input on numerical keypad as
shown in Figure 10, which is widely used on ATM and doors
for inputting the PIN number. The attack contains two steps:
keystroke detection and keystroke recognition.

A. Keystroke detection

In the keystroke detection step, we use a moving vari-
ance algorithm to detect each keystroke event. Figure 6
shows the keystroke detection process. We first calculate
the variance from the block PCA results. Once the vari-
ance exceeds an empirically determined threshold, the sys-
tem detects a keystroke event. Sometimes one keystroke
movement may introduce multiple separated variation peaks,
we treat these movements as one keystroke if their time
interval is less than 0.1 second. The keystroke detection
result is shown in Figure 6(b). The vertical red lines are
the groundtruth of the keystroke time-points provided by a
key logger and the green/red dots are the detected keystrokes
start/end time-points.

After detecting a keystroke movement with start and end
points, we calculate the midpoint of these two points and
segment the data for a period of time near the midpoint
as the waveform of the keystroke (typically two seconds
in our experiments). Our keystroke detection works well
when there is no interference around. However, it can hardly
detect a keystroke when there are objects moving around the
victim. In the future, we plan to use more antenna to separate
nearby objects.

B. Keystroke recognition

Existing works treat each keystroke separately by assum-
ing that the user always returns to a given posture after
each keystroke [6], [10]. In case of continuous typing, our
key observation is that the CFR measurements indicate the
hand/finger movements between keys, instead of the key press.
We model the process as a Hidden Markov Model (HMM)
to infer the transition between subsequent keystrokes. Note
that existing works such as Zhuang et al. [7] using HMM
methods to reveal text input are based on language model,
which is significant different to our method, and it can not



Figure 7. Keystroke movement waveforms for continuous typing.

Figure 8. HMM observation probability matrix.

be applied to the PIN inference for random numbers. The
keystroke recognition process has four steps: shape extraction,
movement direction classification, building Hidden Markov
Model, and key sequence recovery.

Shape Extraction: We first extract the waveform shapes
at keystroke events to determine the movements between
keys. To extract the waveform shape, we perform wavelet
decomposition on each PCA component and use the level-8
approximation coefficients as the output feature. For keystroke
movement with a duration of two seconds, we get a vector of
length 28 for each PCA component.

Figure 7 shows the 10 × 10 possible movements between
the numerical keys. The waveform of the i-th row and the j-
th column represents the average waveform of the keystroke
movement from the start position of key i to key j. From
Figure 7, we can observe the following patterns: First of
all, for any column, the waveforms of different rows have
significant differences. As we mentioned before, the waveform
of the keystroke movement is related to the starting and
ending positions instead of the pressed key. Second, the farther
the moving distance is, the more fluctuations shown in the
waveforms, for example, ‘09’ has large fluctuations, but ‘66’,
‘99’ has only one small spike corresponding to the keypress
motion. Third, by comparing waveforms in two groups of
boxes as we have indicated in the figure, we can find that:
key pairs with same moving distance and direction have
similar waveforms, which makes directly classifying these 100
keystroke movement pairs challenging.

Movement Direction Classification: We use SVM-based
classifier to determine the keystroke movements. A straight-
forward approach is to directly classify the 100 possible move-
ments between different keys into 100 classes. However, this
method has two disadvantages. First, training a 100-category
classifier requires a huge amount of training data to cover
all the different cases. Second, keystroke movements with
similar direction and distance induce very similar waveform

X:-2
Y:-1
O:3

X:0
Y:0

O:18

X:1
Y:2

O:27

X:-1
Y:-1
O:10

X:2
Y:-1
O:31

X:0
Y:2

O:20

61 11 18 84 43 39

Waveforms

Observations

Hidden states

Figure 9. The state and transitions of HMM.

shapes. For example, moving from key ‘1’ to ‘4’ has a similar
waveform as moving from ‘4’ to ‘7’, as they both move up
by one key. We can observe this similarity in many key pairs
as we indicated in Figure 7. Therefore, we use a decoupled
classifier to determine the movement distance and direction.
We train two classifiers, one for the “x” (horizontal) direction
and the other for the “y” (vertical) direction as shown in Figure
10. As there are only five different possible movements, from
-2 to 2 keys, in the horizontal direction and seven different
movements, from -3 to 3 keys, in the vertical direction, the
two SVM classifier are 5-category and 7-category respectively.
Thus, we can use a small number of keystroke samples to train
the classifiers. Figure 14 shows the resulting confusion matrix
of these two classifiers. While the classifiers for keystroke
movement do not provide highly accurate movement classi-
fication results, these results can serve as useful inputs to our
HMM-based keystroke sequence recovery algorithm.

Building Hidden Markov Model: We model the keystroke
process with a HMM indicated as λ = (N,M,A,B,π). In
the HMM, N is the number of hidden states. We use the
consecutive keystrokes as the hidden state, i.e., a state ‘16’
means the user moves from key ‘1’ to key ‘6’. As there are
100 possible key pairs, we have N = 100 in our model. The
parameter M is the number of possible observations for hidden
states. As we use the results of the two classifier that gives
five possible horizontal movements and seven possible vertical
movements, we have M = 5× 7 = 35. The observation prob-
ability matrix B gives the possibility that a given observation
can be observed in a hidden state. Thus, the observation matrix
B is a N ×M matrix with Bjk = P (observation k|state sj).
The transition probability matrix A is the possibility a hidden
state is transmitted to another hidden state, i.e., the user moves
to a new key. The transition probability matrix A is a N ×N
matrix with Aij = P (state sj at time t+ 1|state si at time t).
The initial state distribution vector π indicates the possibility
at the start of the key sequence.

To build the HMM, we need to determine the parameters
A, B and π. The transmission probabilities between hidden
states given in the matrix A can be predefined by the natural
continuity of the typing process. For example, if we assume
equal probability to type any keys, the hidden state ’09’ has a
probability of 0.1 to transfer to states ‘90’, ‘91’, ..., ‘99’, but
cannot transfer to the state ‘87’ because state ‘87’ does not
begin with the key ‘9’. We can also use a uniform distribution
for the initial state distribution π. The observation probability
matrix B is determined through the training samples. We first
collect typing waveform shapes for different key pairs. Then
we use the two movement SVM classifier to calculate the



5 64

2 31

8 97

/ * -

+

.
Del0

Numpad
Num
Lock

Enter

Figure 10. Numerical keypad.

5 meters

Attacker
(Behind the wall)

Keypad

USRP Antenna

Clock 
Source

Figure 11. Experimental devices.

Rx

5m10m15m

5
.4
m

5m

7
.8
m

Rx
Rx Antenna

Wall

Keyboard

Door

(a) Corridor (b) Small Room

Figure 12. Experimental environments.

probability that a given keystroke movement will emit certain
observations. As our SVM classifier is not perfect, there are
some keystroke states that could observe movements other
than the groundtruth movement. With 2800 keystroke samples
and their SVM classification results (observations), we build
the observation probability matrix as we shown in Figure 8,
where a brighter color means higher probability. Note that we
do not need to retrain a different HMM for different user or
scenarios, given the keyboard layout keeps unchanged.

Key Sequence Recovery: After building the Hidden
Markov model, the key sequence recovery can be reduced
to the following problem. Given the observation sequence
O = O1O2O3 · · ·OT , find the optimal hidden sequence
Q = q1q2q3 · · · qT , i.e., to maximize P (Q|O, λ). This problem
can be solved by the well-known Viterbi Algorithm that uses
a dynamic programming approach [44].

In addition to finding the most probable key sequence,
we can also calculate the possibility of all key sequences
given the observations. This allows the attacker to sort the
candidate keystroke sequences in the descending order by their
probabilities. The attacker could then try these sequences one
by one and break the password within a few tries.

VI. IMPLEMENTATION AND EVALUATION

A. Implementation and Evaluation Setup

Implementation: We build SpiderMon on USRP B210
software radios with an external clock source OctoClock CDA-
2990, as shown in Figure 11. The total hardware cost of
the system, including the workstation, is less than 8,000 US
dollars. The LTE signal is transmitted by commercial cellular
BSs that are operated by one of the major cellular operators
in our region. We select one of the detected BSs with the
best signal qualities. The BS used in our experiments has a
central frequency of 2330 MHz and a bandwidth of 20 MHz.
Keystroke samples are collected in two environments as shown
in Figure 12, including a corridor environment for evaluating
the operational distance and keyboard orientations and a small
room for evaluating the through-wall scenario.

Evaluation Setup: The volunteers are asked to type on the
numeric pad of a standard keyboard (Dell Keyboard KB212-
B) to simulate PIN inputs on ATM-machines and smart door
locks. We perform experiments in two different input modes,
one is fixed initial position as assumed by Wikey [10] and
WindTalker [12], the volunteers need to return to an initial
position after each key press (back to ‘.’ in our experiments),
and the other was a natural continuous input of PIN numbers.

0 1 2 3 4 5 6 7 8 9
Pressed key

0

20

40

60

80

100

D
et

ec
tio

n 
ra

te
 (%

)

5m
10m
15m

(a) Keystroke detection rate

72 16 6 0 0 6 0 0 0 0

13 64 0 0 23 0 0 0 0 0

0 0 84 3 0 13 0 0 0 0

0 0 3 97 0 0 0 0 0 0

3 27 0 0 63 0 0 7 0 0

0 0 20 0 3 57 0 0 17 3

0 0 0 0 0 3 94 0 0 3

0 3 0 0 17 0 0 73 7 0

0 0 0 0 0 10 0 3 80 7

0 0 0 0 0 3 3 0 3 91

0 1 2 3 4 5 6 7 8 9
Predicted Key Number

0
1
2
3
4
5
6
7
8
9

A
ct

ua
l K

ey
 N

um
be

r

(b) Confusion matrix
Figure 13. Evaluation of keystroke inference: (a) keystroke detection rate;
(b) confusion matrix of keystroke recognition with a fixed initial position.

The volunteers are requested to type in these two modes
with different randomly generated digit-sequences. We only
consider one-handed input, which is the way that most people
enter passwords in the numeric keypad area. The volunteers
are requested to type with their right hand at a limited input
speed (with an interval about 1 ∼ 1.5 seconds between
keystrokes). To perform the attack, one volunteer play the
role of an attacker, whose data are used for training the SVM
classifier (either for directly keystroke recognition in the fixed
initial position mode or direction movement classification in
the continuous typing mode), another volunteer play the role of
victim, whose data are treated as input PIN codes. The amount
of training data used in our experiments is 150 keystrokes
which can be collected within five minutes. The attacker can
pretend to input on the ATM or smart door keyboard to gather
training data without any cooperation from the victim.
B. Performance under fixed initial position mode

We first evaluate the accuracy of keystroke detection in
the fixed initial position model. We request the volunteers to
type each key 60 times at three different distances (5m, 10m,
and 15m as shown in Figure 12) and count the number of
detected keystrokes. Figure 13(a) shows the accuracy of our
keystroke detection scheme. At distances of 5m, 10m, and
15m, the average keystroke detection rates are 97.7%, 92.5%,
and 95.0%, respectively. We observe that the detection rate
for the key ‘3’ is the lowest. This is because the finger moves
with the shortest distance from the initial position of the key
‘.’ to the key ‘3’ (only 2cm on the numeric keypad). In our
results, 51% of the missing keys are due to the key ‘3’ and
the missing rates of other keys are much smaller. For the false
positive rate, i.e., reporting that a key is pressed when the user
is not typing, we count the number of keystrokes mis-detected
under a silent environment (without surrounding movements).
The false positive rate of detection is 2.38 times per hour.



58.6 16.8 14.7 2.9 7.0

6.5 57.7 26.2 7.9 1.7

1.6 7.0 84.7 6.1 0.6

2.5 7.2 18.1 67.0 5.2

3.8 2.4 10.0 18.3 65.5

-2 -1 0 1 2 

-2

-1

0 

1 

2 

(a) horizontal

48.6 27.0 5.4 0.0 1.4 16.2 1.4

0.0 57.5 14.0 2.8 8.1 17.5 0.0

0.0 6.5 65.5 16.2 7.3 4.4 0.2

0.1 1.4 7.6 79.5 8.2 3.1 0.0

0.0 4.3 8.6 12.7 62.9 11.4 0.0

1.0 6.7 3.4 4.0 13.5 69.7 1.7

0.0 2.6 0.0 0.0 5.1 38.5 53.8

-3 -2 -1 0 1 2 3 

-3

-2

-1

0 

1 

2 

3 

(b) vertical
Figure 14. Confusion matrix of SVM classifier of the decoupled horizontal
and vertical direction movement distance.

Then we evaluate the recognition performance under fixed
initial position mode. Figure 13(b) shows the confusion matrix
for key recognition. The average recognition accuracy is 77%,
and the recognition accuracy of the key ‘5’ is the lowest (57%).
The possible reason could be that the key ‘5’ is located at the
center of the numeric keypad so that it has the largest number
of adjacent keys.

We observe that most of the errors come from adjacent keys.
For example, all recognition errors of the key ‘1’ are due to
the key ‘0’ and ‘4’. The key ‘7’ has a 17% probability of
being recognized as the key ‘4’ and 7% being recognized as
the key ‘8’. We also noticed that misidentification are more
inclined to the vertical key groups like ‘147’, ‘258’ instead of
the horizontal key groups, such as ‘123’. We believe that this is
related to the position of the keyboard during our experiments
(see Figure 12). Given our keyboard placement, for a keystroke
action from the ‘.’ key to the target key, the corresponding path
length change in the horizontal direction is more pronounced
than in the vertical direction.

In exiting work that use Wi-Fi CSI as side-channel,
WindTalker [12] achieves comparable 80% mean accuracy at a
distance of 0.75m, but quickly drops to 40% when the distance
is 1.5m. Wikey [10] only works for scenarios where the AP is
within 30cm. Benefit from GPS-regulated oscillators and low-
noise amplifiers used in commercial cellular BSs, our LTE-
based approach can operate in a distance of 5 ∼ 15m.

C. Performance under continuous typing mode

To evaluate the performance of continuous keystrokes, we
first evaluate the performance of the keystroke movement
SVM classifier for two different approaches: the 100-category
SVM that directly estimates the possibility of the 100 possible
key pair transitions and the decoupled horizontal-vertical SVM
that estimates the movement in the two directions separately.
The top-3 classification accuracies for different approaches are
showed in Figure 15(a). We observe that the performance of
the 100-category SVM is quite poor due to the much larger
number of categories to be classified when compared to the
decoupled SVM. For the 100-category classifier, the top-3
accuracy is less than 30% and the top-50 accuracy is still less
than 90%.

We evaluate the continuous keystroke sequence inference
performance as follows. For each test keystroke waveform of
6 digits, we calculate the probabilities for all possible 6-digit
sequences with the HMM method. We sort the candidate key

100-category horizontal-5 vertical-7
Different SVM Classifier

0

50

100

R
ec

og
ni

tio
n 

A
cc

ur
ac

y 
(%

)

top-1
top-2
top-3

(a) SVM classifiers performance

100 101 102 103 104

Number of Candidate Passwords

0

50

100

In
fe

re
nc

e 
A

cc
ur

ac
y 

(%
)

HMM (block PCA)
HMM (traditional PCA)
Direct (decoupled)
Direct (100-category)

(b) Password inference

Figure 15. Keystroke recognition performance with arbitrary initial positions:
(a) SVM classifier performance for 100-category and decoupled directions
SVM; (b) Password inference accuracy with different methods.

20 40 60 80 100
Top-K candidates

0

20

40

60

80

In
fe

re
nc

e 
A

cc
ur

ac
y 

(%
)

5m 5m NLOS 10m 15m

(a) Impact of different distances

20 40 60 80 100
Top-K candidates

0

20

40

60

80

In
fe

re
nc

e 
A

cc
ur

ac
y 

(%
)

Front Back Left Right

(b) Impact of different orientations
Figure 16. Password inference accuracy under the impact of different
directions, distances, and victims.

sequences based on their probability in the decreasing order
and report the probability that the ground truth sequence is
in the top-K candidates. For example, a top-K accuracy of
50% indicates that 50% of the true PIN codes can be found in
the first K candidate sequences. Figure 15(b) shows the top-1
accuracy is 25.0%, top-10 accuracy is 54.5% for the HMM-
based inference. The top-1 accuracy when directly using the
output of the 100-category SVM classifier is less than 2%. We
also consider the method that directly uses the horizontal and
vertical SVM result to calculate key sequences probabilities.
As shown with the yellow line, to achieve a success rate
of 25%, the attacker may need 790 trials using the direct
probability calculation without HMM.

D. Performance under different scenarios

We conducted keystroke recognition experiments in differ-
ent environments, to see the impact of different distances,
NLOS scenario, keyboard orientations, and different victims.

Impact of Distance and NLOS: We first evaluate the sys-
tem performance when the victim was at different distances to
the receiving antenna. Figure 16(a) shows the top-K password
inference accuracy under a distance of 5m, 10m, 15m, and
an NLOS scenario (where the attack devices are blocked by
a 21cm thick concrete wall) as shown in Figure 12. In a
distance of 5m, we can recover a 6-digits password with over
87% probability within 100 trials. Even at a distance of 15m,
SpiderMon can still achieve 36% accuracy in ten trials and
over 60% in 100 trials. Because of the good penetration of
LTE signals, our system can achieve 51% accuracy in ten trials
in the NLOS environment with a distance of 5m.

Impact of Keyboard Orientation: The relative direction
between the victim and the attacker has serious impacts on
the performance of our system, as different directions will
induce different multi-path environments. We evaluate the
performance of SpiderMon by placing the keyboard in four
different directions (at a distance of 10 meters) so that the
receiving antenna was pointed to the left, right, front, and



Rx

10m

(a) Non-victims’ interferences

1 2 3 4 5 6 7 8 9 10
Top-K

0

20

40

60

80

100

R
ec

og
ni

tio
n 

A
cc

ur
ac

y 
(%

)

w/o interference
sitting
sitting (2 person)
standing
walking

(b) Interference of different motions

1 2 3 4 5 6 7 8 9 10
Top-K

0

20

40

60

80

100

R
ec

og
ni

tio
n 

A
cc

ur
ac

y 
(%

)

w/o interference
sit 2m
sit 5m
sit 10m
walk 5m
walk 10m
walk 20m

(c) Interference at different distances
Figure 17. Keystroke recognition top-k accuracy with different levels of interference from non-victims.

V1 V2 V3
0

20

40

60

80

100

R
ec

og
ni

tio
n 

A
cc

ur
ac

y 
(%

)

top 1
top 2
top 3

(a) Different victims Top-K ac-
curacy

94.0% 51.5% 50.9%

52.0% 62.0% 49.1%

48.8% 50.4% 78.0%

V1 V2 V3
Test Data

V1

V2

V3

Tr
ai

ni
ng

 D
at

a

40

50

60

70

80

90

100

(b) Different training sets accur-
acy

Figure 18. Keystroke recognition with different victims and the training set.

back of the victim. The volunteers always typed with their
right hand and the keyboard was always placed in the right
front of the volunteer during the experiments. From Figure
16(b) we can observe that the performance of SpiderMon is
consistent for the front, back, and right orientations, while the
performance on the left is considerably worse. This could be
caused by the occlusion of the typing hand (right hand) by the
victim’s moving body when viewed from the left.

Impact of Different Victims: We evaluate the impact of
different typing styles with three volunteers as the victims.
The evaluation is based on the single keystroke setup. In Figure
18(a), we show the keystroke recognition accuracy of the three
participants when training by his/her own data, where V1, V2,
and V3 represent three different victims. We observe that while
the top-1 accuracies for the three victims are different, i.e.,
94%, 62%, and 78%, all victims’ top-3 accuracies are over
95%. We further evaluated the performance when the training
and testing data are from different victims (one victim’s data
as the training set and another victim’s as the testing set). The
top-1 results of the accuracy are shown in Figure 18(b). In
Figure 18(b), the digits in each grid mean the top-1 accuracy
when the testing data is from Va and the training data is from
Vb, and the diagonal data represents the accuracy of using
his/her own data with 10-fold cross-validation. We observe that
when using different people’s data for training, the accuracy is
significantly reduced. For example, for V1, when the training
data is from V2 and V3, the accuracy drops from 94.0%
to 52.0% and 48.8%. However, we believe this problem can
be alleviated by collecting more people’s keystroke data and
training with a more powerful machine learning algorithm that
is less sensitive to the variance of users, e.g., with a GAN [45].

Non-victims’ interference: To evaluate the performance
when other non-victims are in the target area, we conducted
two sets of single keystroke recognition experiments concern-
ing the interference of different movement intensities and

different interfere distances. A volunteer plays the role of a
victim to perform keystrokes at a distance of 10 meters away
from the receive antenna, other volunteers are treated as non-
victims in the target area. An illustration of the experiment is
shown in Figure 17(a).

In the first experiment, non-victims were requested to
perform different movements within 5 meters of the victim,
including sitting, standing, and walking. Figure 17(b) shows
the top-K accuracy of the keystroke recognition under the
above interferences. We observe that as the intensity of non-
victims’ actions increase, the recognition accuracy decreases
significantly. It is worth noting that: first, there is no significant
impact on the accuracy of recognition when someone is sitting
still, even if there are multiple non-victims around. Second,
the standing posture has more significant influence on the
performance than the sitting posture, because humans move
the body involuntarily even when standing still. Third, the
impact of walking on the signal is so significant that the
keystroke action is completely submerged.

In the second experiment, non-victims were asked to main-
tain the sitting or walking state within different distances from
the victim. The impact of these interferences are shown in
Figure 17(c). We observe that a sitting person has nearly no
effect on keystroke recognition, even if it is within 2 meters of
the victim. The walking action, even at a distance of 20 meters,
still has an intensity higher than the keystroke action, the top-1
accuracy rate is only about 25%, and the top-3 accuracy rate
is less than 60%, barely better than a random guess.

VII. CONCLUSIONS

In this paper, we show that LTE reference signals can be
used as a medium for side-channel attacks by implementing
the SpiderMon system that displays and analyzes LTE CRS
signals in real-time. Compared to previous attacks that use Wi-
Fi CSI, LTE-based attacks can achieve comparable perform-
ance while have a longer operational distance and do not need
active transmissions. Therefore, LTE-based attacks are harder
to be detected and lead to more serious security breaches. We
hope that our work could inspire more research in this area to
protect users from such attacks.

ACKNOWLEDGMENT

We would like to thank our anonymous shepherd and re-
viewers for their valuable comments. This work is partially
supported by National Natural Science Foundation of China
under Numbers 61872173, 61872174, 61972192, and Collab-
orative Innovation Center of Novel Software Technology.



REFERENCES

[1] D. Shukla, R. Kumar, A. Serwadda, and V. V. Phoha, “Beware, your
hands reveal your secrets!,” in Proceedings of ACM CCS, pp. 904–917,
ACM, 2014.

[2] J. Sun, X. Jin, Y. Chen, J. Zhang, Y. Zhang, and R. Zhang, “VISIBLE:
Video-assisted keystroke inference from tablet backside motion.,” in
NDSS, 2016.

[3] E. Owusu, J. Han, S. Das, A. Perrig, and J. Zhang, “Accessory: password
inference using accelerometers on smartphones,” in Proceedings of the
Twelfth Workshop on Mobile Computing Systems & Applications, p. 9,
ACM, 2012.

[4] X. Liu, Z. Zhou, W. Diao, Z. Li, and K. Zhang, “When good becomes
evil: Keystroke inference with smartwatch,” in Proceedings of ACM
CCS, 2015.

[5] J. Liu, Y. Wang, G. Kar, Y. Chen, J. Yang, and M. Gruteser, “Snooping
keystrokes with mm-level audio ranging on a single phone,” in Proceed-
ings of ACM MobiCom, 2015.

[6] T. Zhu, Q. Ma, S. Zhang, and Y. Liu, “Context-free attacks using
keyboard acoustic emanations,” in Proceedings of ACM CCS, 2014.

[7] L. Zhuang, F. Zhou, and J. D. Tygar, “Keyboard acoustic emanations
revisited,” ACM Transactions on Information and System Security (TIS-
SEC), vol. 13, no. 1, p. 3, 2009.

[8] D. Asonov and R. Agrawal, “Keyboard acoustic emanations,” in IEEE
Symposium on Security and Privacy, 2004.

[9] J. Liu, C. Wang, Y. Chen, and N. Saxena, “Vibwrite: Towards finger-
input authentication on ubiquitous surfaces via physical vibration,” in
Proceedings of ACM CCS, 2017.

[10] K. Ali, A. X. Liu, W. Wang, and M. Shahzad, “Keystroke recognition
using WiFi signals,” in Proceedings of ACM MobiCom, 2015.

[11] B. Chen, V. Yenamandra, and K. Srinivasan, “Tracking keystrokes using
wireless signals,” in Proceedings of ACM MobiSys, 2015.

[12] M. Li, Y. Meng, J. Liu, H. Zhu, X. Liang, Y. Liu, and N. Ruan, “When
CSI meets public WiFi: Inferring your mobile phone password via WiFi
signals,” in Proceedings of ACM CCS, 2016.

[13] J. Zhang, X. Zheng, Z. Tang, T. Xing, X. Chen, D. Fang, R. Li,
X. Gong, and F. Chen, “Privacy leakage in mobile sensing: Your unlock
passwords can be leaked through wireless hotspot functionality,” Mobile
Information Systems, vol. 2016, 2016.

[14] L. Chiaraviglio, F. Cuomo, M. Maisto, A. Gigli, J. Lorincz, Y. Zhou,
Z. Zhao, C. Qi, and H. Zhang, “What is the best spatial distribution
to model base station density? a deep dive into two european mobile
networks,” IEEE Access, vol. 4, pp. 1434–1443, 2016.

[15] M. Y. Arslan, J. Yoon, K. Sundaresan, S. V. Krishnamurthy, and
S. Banerjee, “FERMI: a femtocell resource management system for-
interference mitigation in OFDMA networks,” in Proceedings of ACM
MobiCom, 2011.

[16] R. Baldemair, T. Irnich, K. Balachandran, E. Dahlman, G. Mildh,
Y. Selén, S. Parkvall, M. Meyer, and A. Osseiran, “Ultra-dense networks
in millimeter-wave frequencies,” IEEE Communications Magazine,
vol. 53, no. 1, pp. 202–208, 2015.

[17] Y. Qiao, O. Zhang, W. Zhou, K. Srinivasan, and A. Arora, “Phycloak:
Obfuscating sensing from communication signals,” in Proceedings of
Usenix NSDI, 2016.

[18] F. Lu, H. Du, A. Jain, G. M. Voelker, A. C. Snoeren, and A. Terzis,
“CQIC: Revisiting cross-layer congestion control for cellular networks,”
in Proceedings of ACM HotMobile, 2015.

[19] X. Xie, X. Zhang, and S. Zhu, “Accelerating mobile web loading using
cellular link information,” in Proceedings of ACM MobiSys, 2017.

[20] X. Xie, X. Zhang, S. Kumar, and L. E. Li, “pistream: Physical layer
informed adaptive video streaming over LTE,” in Proceedings of ACM
MobiCom, 2015.

[21] S. Kumar, E. Hamed, D. Katabi, and L. Erran Li, “LTE radio analytics
made easy and accessible,” in Proceedings of ACM SIGCOMM, 2014.

[22] Y. Li, J. Fang, K. Tan, J. Zhang, Q. Cui, and X. Tao, “Soft-LTE: A
software radio implementation of 3GPP long term evolution based on
Sora platform,” in Proceedings of ACM MobiCom (Demo), 2009.

[23] M. Driusso, C. Marshall, M. Sabathy, F. Knutti, H. Mathis, and
F. Babich, “Vehicular position tracking using lte signals,” IEEE Trans.
Vehicular Technology, vol. 66, no. 4, pp. 3376–3391, 2017.

[24] D. Vasisht, S. Kumar, H. Rahul, and D. Katabi, “Eliminating channel
feedback in next-generation cellular networks,” in Proceedings of ACM
SIGCOMM, 2016.

[25] Q. Pu, S. Gupta, S. Gollakota, and S. Patel, “Whole-home gesture
recognition using wireless signals,” in Proceedings of ACM MobiCom,
2013.

[26] Y. Wang, J. Liu, Y. Chen, M. Gruteser, J. Yang, and H. Liu, “E-
eyes: In-home device-free activity identification using fine-grained WiFi
signatures,” in Proceedings of ACM MobiCom, 2014.

[27] W. Wang, A. X. Liu, M. Shahzad, K. Ling, and S. Lu, “Understanding
and modeling of WiFi signal based human activity recognition,” in
Proceedings of ACM MobiCom, 2015.

[28] G. Wang, Y. Zou, Z. Zhou, K. Wu, and L. M. Ni, “We can hear you
with Wi-Fi!,” in Proceedings of ACM MobiCom, 2014.

[29] F. Adib and D. Katabi, “See through walls with WiFi!,” in Proceedings
of ACM SIGCOMM, 2013.

[30] F. Adib, Z. Kabelac, and D. Katabi, “Multi-person motion tracking via
RF body reflections,” in Proceedings of Usenix NSDI, 2015.

[31] J. Lien, N. Gillian, M. E. Karagozler, P. Amihood, C. Schwesig,
E. Olson, H. Raja, and I. Poupyrev, “Soli: ubiquitous gesture sensing
with millimeter wave radar,” ACM Transactions on Graphics, vol. 35,
no. 4, p. 142, 2016.

[32] T. Wei and X. Zhang, “mTrack: High-precision passive tracking using
millimeter wave radios,” in Proceedings of ACM MobiCom, 2015.

[33] L. Yang, Q. Lin, X. Li, T. Liu, and Y. Liu, “See through walls with
COTS RFID system!,” in Proceedings of ACM MobiCom, 2015.

[34] C. Wang, J. Liu, Y. Chen, H. Liu, L. Xie, W. Wang, B. He, and
S. Lu, “Multi-touch in the air: Device-free finger tracking and gesture
recognition via cots rfid,” in Proceedings of IEEE INFOCOM, 2018.

[35] D. K. P. Tan, M. Lesturgie, H. Sun, W. Li, and Y. Lu, “GSM based
through-the-wall passive radar demonstrator for motion sensing,” in
Proceedings of IEEE New Trends for Environmental Monitoring Using
Passive Systems, 2008.

[36] Q. Yue, Z. Ling, X. Fu, B. Liu, K. Ren, and W. Zhao, “Blind recognition
of touched keys on mobile devices,” in Proceedings of ACM CCS, 2014.

[37] Y. Berger, A. Wool, and A. Yeredor, “Dictionary attacks using keyboard
acoustic emanations,” in Proceedings of ACM CCS, pp. 245–254, ACM,
2006.

[38] Y. Yao, Y. Li, X. Liu, Z. Chi, W. Wang, T. Xie, and T. Zhu, “Aegis:
An interference-negligible RF sensing shield,” in Proceedings of IEEE
INFOCOM, 2018.

[39] LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical
channels and modulation. 3GPP LTE TS 36.211, 2015.

[40] D. Tse and P. Viswanath, Fundamentals of wireless communication.
Cambridge university press, 2005.

[41] H. Li, W. Yang, J. Wang, Y. Xu, and L. Huang, “WiFinger: talk to
your smart devices with finger-grained gesture,” in Proceedings of ACM
UbiComp, 2016.

[42] D. Vasisht, S. Kumar, and D. Katabi, “Decimeter-level localization with
a single WiFi access point,” in Proceedings of Usenix NSDI, 2016.

[43] Y. Xie, Z. Li, and M. Li, “Precise power delay profiling with commodity
WiFi,” in Proceedings of ACM MobiCom, 2015.

[44] L. R. Rabiner, “A tutorial on hidden markov models and selected
applications in speech recognition,” Proceedings of the IEEE, vol. 77,
no. 2, pp. 257–286, 1989.

[45] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
in Advances in neural information processing systems, pp. 2672–2680,
2014.


