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ABSTRACT

In Human-Computer Interactions (HCI), to reduce the dependency

of bulky devices like physical keyboards and joysticks, many gesture-

based HCI schemes are adopted. As a typical HCI technology, text

input has aroused much concern and many virtual or wearable key-

boards have been proposed. To further remove the keyboard and

allow people to type in a device-free way, we propose AirTyping,

i.e., a mid-air typing scheme based on Leap Motion. During the

typing process, the Leap Motion Controller captures the typing

gestures with cameras and provides the coordinates of finger joints.

Then, AirTyping detects the possible keystrokes, infers the typed

words based on Bayesian method, and outputs the inputted word

sequence. The experiment results show that our system can detect

the keystrokes and infer the typed text efficiently, i.e., the true pos-

itive rate of keystroke detection is 92.2%, while the accuracy that

the top-1 inferred word is the typed word achieves 90.2%.
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1 INTRODUCTION

The development of human activity recognition technology has

brought new ways for Human-Computer Interaction (HCI). Specifi-

cally, people can perform gestures with arms, hands or even fingers

to interact with computer/devices, without the necessity of using

joysticks or specially designed controllers, e.g., playing motion

sensing games. As a typical HCI technology, text input has aroused

people’s attention, thus many gesture based input schemes [1][2][3]

are proposed to get rid of the dependency of physical keyboards.

However, the existing work tends to introduce virtual keyboard or

wearable sensors for text input. To further remove the constraints

of keyboard and wearable sensors, we propose AirTyping, i.e., a

mid-air typing scheme based on Leap Motion, as shown in Fig. 1.

When the user types words in mid-air over the Leap Motion Con-

troller (LMC) with standard fingering, AirTyping utilizes LMC to

track the coordinates of finger joints and infers the typed words for

text input. AirTyping can be used in many scenarios inconvenient

to use keyboards or required to protect the privacy of text input

without a visible keyboard layout .

However, without the keyboard layout, it is difficult to map

the finger’s movement with a specific keystroke, which brings the

challenges of keystroke detection and recognition. Specifically, con-

sidering that fingers not making a keystroke can also move, we

introduce the bending angles of fingers, movement trend of a finger

in consecutive coordinates, and time difference between keystrokes

to detect the most possible finger making a keystroke. Besides, con-

sidering possible wrong, false positive and false negative detected
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Figure 1: Mid-air typing based on Leap Motion.
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keystrokes, and the one-to-many mapping between the finger and

characters in standard fingering, we introduce the Bayesian method

to infer the typed word sequence for text input.

2 RELATEDWORK

To remove the dependency of physical keyboards, CamK [3] is

designed to input text into small devices by using a panel with

a keyboard layout. Microsoft Hololens [1] provides a projection

keyboard in front of the user for text input. When removing the

constraint of virtual keyboard layout, RF-glove [2] recognizes fin-

ger movements using RF signals for mid-air interaction, while it

can be easily affected by the variations of environments. Consider-

ing the above limitations of layouts or environments, Leap Motion

Controller [6] is introduced for mid-air HCI. Assam et al. [5] build

a Google Chrome extension to facilitate web browsing, but the

involved gestures are not suitable for text input. ATK [4] enables

freehand typing in the air, while it limits the number of keystrokes

and the number of characters in a word to be exactly the same.

Different from the existing work, we aim to provide a mid-air typ-

ing scheme based on Leap Motion for text input while having no

limitations on the number of keystrokes or characters in a word.

3 SYSTEM DESIGN

3.1 System Overview

Figure 2 shows the main components of the AirTyping system. The

inputs are the coordinates of finger joints captured by Leap Motion

controller, while the output is a sentence composed of inferred

words. While the user types in mid-air over the Leap Motion con-

troller (LMC), we first utilize Keystroke Detectionmodule to analyze

the finger movements based on the coordinates of finger joints,

and detect the possible keystroke happening. Then, based on Word

Inference module, we utilize Bayesian method to infer the most

possible word for a specific keystroke sequence, which is separated

by the space key. With the inferred words, AirTyping can output

the sentence (i.e., word sequence) typed by the user for text input.

Ki

Keystroke Detection

WjWord

Keystroke 
Sequence

 Calculating bending 
angles of fingers

Detecting the 
possible keystroke

Removing false 
positive keystrokes

X

Y

Z

Coordinates

Word Inference

The Number
of Keystrokes

The Permutations
of Keystrokes P(Ki |Wj)

Sentence

Figure 2: System Framework.

3.2 Keystroke Detection

The keystroke detection module is designed to analyze the finger

movements from the coordinates of finger joints, and detect the

possible keystroke happening.

3.2.1 Calculating bending angles of fingers. Intuitively, during a

keystroke, the fingertip first bends down, then stays at the lowest

position for a short duration, and finally moves away. Therefore, we

can detect the possible keystroke by measuring the bending angle

of a finger. For convenience, we introduce θ to describe the bending

angle, which is formed by the distal phalanx and the corresponding

metacarpal bone, as shown in Fig. 1. Due to the fact that there is no

metacarpal bone for the thumb, we use the θ between the distal and

proximal phalanx for the thumb. When θ > ϵb , there is a possible
keystroke, we set ϵb = 45◦ empirically.

3.2.2 Detecting the possible keystroke. Based on the bending angle

of a finger, we can find the fingers which may make a keystroke.

To further determine the only finger making a keystroke, we first

compare the y-coordinate of each fingertip (the coordinate system

of LMC is shown in Fig. 2), and then select the finger f having the

smallest y-coordinate as the finger making a keystroke, as shown

in Fig. 1. This is because the finger pressing a key often achieves

the lowest position, when compared with other fingers. Then, we

will further verify that whether the selected finger really makes

a keystroke or not, based on the movement trend of the finger.

We compare three consecutive y-coordinates of the finger f , i.e.,
yi−1, yi , yi+1. If the finger’s movement satisfies the ‘V’-shaped

feature, i.e., yi < yi−1 and yi < yi+1, we detect a possible keystroke
corresponding to the finger f .

3.2.3 Removing false positive keystrokes. Finally, to remove the

false duplicate keystrokes in a short duration, we introduce the time

difference between two consecutive keystrokes. The newly detected

possible keystrokewill be treated as a keystroke, onlywhen the time

difference between the current keystroke and the last determined

keystroke is larger than Δt . According to [7], the duration of a

keystroke is usually about 185ms, thus we set Δt = 185ms .

3.3 Word Inference

After detecting the keystroke, we will infer the typed word based on

the keystroke sequence. However, due to the interference of other

fingers’ movements, these is a probability of detecting a wrong,

false positive or false negative keystroke. Besides, without a key-

board layout, we can not map the keystroke with a character (i.e.,

‘a’-‘z’) directly. That is to say, there is not a one-to-one mapping be-

tween the keystroke and the character. As shown in Fig. 3, the user

types with standard fingering, thus the finger making a keystroke

corresponds to multiple characters, e.g., the 2nd finger corresponds

to the chars ‘w’, ‘s’ and ‘x’. Therefore, to infer the typed word from

the keystrokes, we introduce the Bayesian method, as described

below.

Considering that words are separated by the space key, we first

introduce the space key, i.e., keystrokes made by the 5th or 6th

finger, to separate the keystrokes. Then, we can get a specific key-

stroke sequence corresponding to a word. For convenience, we

use Ki , i ∈ N+ to represent the keystroke sequence, while using

Wj , j ∈ N+ to represent a word in the dictionary. Then, the proba-

bility P (Wj |Ki ) means that the keystroke sequence Ki is inferred as
the wordWj . When P (Wj |Ki ) achieves the highest value, the word
Wj is chosen as the inferred word. According to Bayes’ theorem,

P (Wj |Ki ) can be calculated with Eq. (1),

P (Wj |Ki ) =
P (Wj ) × P (Ki |Wj )

P (Ki )
(1)

where P (Wj ) is the prior probability representing the occurrence

frequency of wordWj , P (Ki ) is the probability of detecting the
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Figure 3: The standard fingering for typing.

keystroke sequence Ki , P (Ki |Wj ) is the likelihood function which

estimates the probability of the keystroke sequence Ki based on

the word Wj . Since each word has same occurrence frequency,

i.e., P (Wj ) is equal among all words, and P (Ki ) is also same for

all words, the Eq. (1) can be transformed to the calculation of the

likelihood function P (Ki |Wj ), i.e., P (Wj |Ki ) ∝ P (Ki |Wj ), which will
be calculated with the number and the permutations of keystrokes.

3.3.1 Inference with the number of keystrokes. Intuitively, if a key-

stroke sequence Ki exactly matches with a wordWj , the number

of keystrokes in Ki should be same with the number of chars in

Wj . Therefore, if the number of keystrokes is closer to the number

of chars in a word, the word has a higher likelihood. For example,

when four keystrokes are detected, the word “they” (i.e., 4 chars)

will have a higher likelihood than the word “a” (i.e., 1 char) or “there-

fore” (i.e., 9 chars). Specifically, we use the number of keystrokes

ni in Ki to calculate the likelihood Pn (Ki |Wj ) for Ki based on the

wordWj , as described in Eq. (2).

Pn (ni |Wj ) = 1 − |ni − lj |
lmax + δ

(2)

Here, lj is the length of wordWj , and lmax is the maximum length

difference of the words in the dictionary, i.e., the difference between

the longest and shortest word length. According to the adopted

word set [8], we set lmax = 16 in this paper. To avoid the probability

Pn (ni |Wj ) being set to 0, we introduce a tolerance factor δ = 0.01.

For a better illustration, we assume four keystrokes are detected,

and we calculate the likelihood of the words “they”, “a” and “there-

fore” with Eq. (2). As shown in Eq. (3), the likelihood of the word

“they” is higher than that of the words “a” or “therefore”, since the

number (i.e., four) of chars in “they” is closer to the number (i.e.,

four) of keystrokes.

Pn (ni = 4|Wj = “a”) = 1 − |4 − 1|
16 + 0.01

= 0.813

Pn (ni = 4|Wj = “they”) = 1 − |4 − 4|
16 + 0.01

= 1

Pn (ni = 4|Wj = “therefore”) = 1 − |4 − 9|
16 + 0.01

= 0.688

(3)

3.3.2 Inference with the Permutations of Keystrokes. In addition to

the number of keystrokes, the finger sequencemaking the keystroke

sequence also affects the likelihood, since each finger maps with

more than one character. As shown in Fig. 3, when the user types

in standard fingering, each finger makes several fixed keystrokes,

i.e., the keys have the same color with the fingertip. Therefore,

t  h  a  t
q 0     1    2     3

p 0      1      2      0      1      2      0      1      2      0      1      2      
'4' '7' '3' 

0     1    2     3 0     1    2     3 0     1    2     3

(a) Four Permutations for "that".

q 0     1      2    0        1       0        1       0        1       

t  h  e t   o

(b) One Permutation for "the". (c) Three Permutations for “to".
p 0      1      2      0      1      2      0      1      2      0      1      2    

'4' '7' '3' '4' '7' '3' '4' '7' '3' 

'4' '7' '3' '4' '7' '3' '4' '7' '3' '4' '7' '3' 

t  h  a  t t  h  a  t t  h  a  t

t   o t   o

Figure 4: The permutations for “that”, “the” and “to”.

we further use the permutations of keystrokes to calculate the

likelihood Pm (Ki |Wj ) for the keystroke sequence Ki based on the

wordWj .

Specifically, for a detected keystroke sequence Ki = (k1,k2,
...,kni ) and a word Wj = (w1,w2, ...,wlj ) in the dictionary, kp
is the pth keystroke, and it is represented with the finger f (kp )
making the keystroke, p ∈ [1,ni ], f (kp ) ∈ [1, 10], while wq is

the qth letter of the word, wq ∈[‘a’, ‘z’], q ∈ [1, lj ]. If ni ≤ lj , the
number of the permutations of keystrokes in Ki for the wordWj

is A(lj ,ni ) =
lj !

(lj−ni )! , which denotes all possible cases of replacing

ni letters in the wordWj with the ni keystrokes. If ni > lj , the
number of permutations changes to A(ni , lj ), which denotes all

cases of replacing the lj keystrokes in Ki with lj letters in the word

Wj . Therefore, the likelihood Pm (Ki |Wj ) can be represented with

Eq. (4),

Pm (A|Wj ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪
⎩

∑

m∈A(ni ,lj )
∏

p ∈ [1, ni ]
q ∈ [1, lj ]

P (wq ∈ Sf (kp ) |m),ni > lj

∑

m∈A(lj ,ni )
∏

p ∈ [1, ni ]
q ∈ [1, lj ]

P (wq ∈ Sf (kp ) |m),ni ≤ lj

(4)

wherem denotes a case of all permutations A. Given the permu-

tationm, when the letter wq is in the key set Sf (kp ) typed by the

finger f (kp ), P (wq ∈ Sf (kp ) |m) is calculated as 1
|Sf (kp ) | . For exam-

ple, the letter ‘t’ is in the key set of the finger 4, so it is calculated as
1
|S4 | =

1
6 . If the letterwq is not in the key set Sf (kp ) , the probability

P (wq ∈ Sf (kp ) |m) is set to the tolerance factor δ .

For instance, if the user wants to type the word “the”, the 4th, 7th

and 3rd finger will press in sequence. Based on Fig. 3, the detected

keystroke sequence Ki will be represented as ‘4’-‘7’-‘3’, and the

number of Ki is ni = 3. In regard to the wordWj , ifWj = “that”, the

length ofWj is lj = 4. Since ni < lj , the number of permutations is

A(lj ,ni ). The corresponding possible permutations are shown in

Fig. 4(a). Then the likelihood of the keystroke sequence Ki based
on the wordWj can be calculated with Eq. (5).

Pm (A(lj ,ni ) |Wj = “that”) =
1

|S4 | ×
1

|S7 | × δ +
1

|S4 | ×
1

|S7 | × δ +
1

|S4 | × δ
2 + δ3 = 5.75 × 10−4

(5)

where 1
|S4 | is the probability of typing ‘t’ by finger 4, and

1
|S7 | is the

probability of typing ‘h’ by finger 7. The four components represent

the four permutation cases shown in Fig. 4(a).
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Figure 5: The detection accuracy of the finger making a key-

stroke (‘null’ means no keystrokes).

If the length of the word and that of the keystroke sequence

are the same (i.e., ni = lj ), there is only one permutation for them,

as shown in Fig. 4(b), and the likelihood about the word “the” is

shown in Eq. (6). If ni > lj , we assume the wordWj = “to”. At this

time, ni = 3 and lj = 2, the number of permutations changes to

A(ni , lj ) = 3. The corresponding possible permutations are shown

in Fig. 4(c). We will calculate the likelihood of Ki based on the word

Wj with Eq. (7):

Pm (A(lj ,ni ) |Wj = “the”) =
1

|S4 | ×
1

|S7 | ×
1

|S3 |
= 1.85 × 10−2

(6)

Pm (A(ni , lj ) |Wj = “to”) =
1

|S4 | × δ +
1

|S4 | × δ + δ
2

= 4.33 × 10−3
(7)

3.3.3 Combination of the number and the permutation of keystrokes.

Finally, we combine the probability about the number and the per-

mutations of the keystroke sequence, and formulate it as P (Ki |Wj ) =
Pn (ni |Wj ) × Pm (A|Wj ). For a detected keystroke sequence Ki , we
first filter out the words that satisfy |ni − lj | ≤ Δn, and then calcu-

late the likelihood for each word, and select the word having the

highest probability as the inferred result. Here, Δn = 2.

4 PERFORMANCE EVALUATION

We implement AirTyping based on the Leap Motion Controller

(LMC), as shown in Fig. 1. The LMC uses the embedded cameras

and infrared LEDs to provide the coordinates of finger joints, where

the sampling rate is 60 Hz. The user performs typing behaviors

about 15cm above LMC, while the inferred words will be sent to the

displayer for text input. The adopted dictionary includes 5000 most

frequently used words downloaded from Word Frequency Data [8].

Firstly, we evaluate the performance of keystroke detection mod-

ule. Specifically, each finger makes 50 keystrokes. As shown in Fig.

5, the average detection accuracy of the finger making a keystroke

reaches 92.2%, and the false positive rate (i.e., treat non-keystrokes

as keystrokes) and false negative rate (i.e., treat keystrokes as non-

keystrokes) are 1.7% and 5.4%, respectively. Thus we can accurately

analyze the finger movements and detect the possible keystrokes.

In addition, we test the performance of word inference module.

Specifically, we calculate the likelihood function for each word

and obtain the candidate words in the dictionary. As shown in

Fig. 6, when the keystrokes are detected accurately, the probability

90.16
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Figure 6: The probability that top-k candidate words contain

the typed/target word.

that the top-1 candidate word with the highest likelihood is the

typed/target word achieves 90.2%. Besides, the probability that

the top-3 candidate words contain the typed/target word achieves

98.5%. Overall, we can detect keystrokes and infer the typed words

accurately, and provide an efficient mid-air typing scheme for text

input.

5 CONCLUSION

In this paper, we propose AirTyping, which allows people to type in

mid-air based on LeapMotion. To detect the possible keystrokes, we

introduce the bending angles of fingers, movement trend of a finger

in consecutive coordinates, and time difference between keystrokes.

To infer the typed word sequence, we introduce Bayesian method

and calculate the likelihood function from the number and the

permutation of keystrokes. The experiment results show that Air-

Typing can detect the keystrokes and infer the typed text efficiently,

i.e., the true positive rate of keystroke detection is 92.2%, while the

accuracy that the top-1 inferred word is the typed word achieves

90.2%.
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