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Abstract— In this paper, we investigate the problem of space
synchronization, i.e., synchronizing inertial readings from multiple
mobile devices in the spatial dimension, in other words, mul-
tiple mobile devices are space synchronized to have the same
3-D coordinates except that each device is the origin of its
corresponding coordinate. We propose a scheme called MObile
Space Synchronization (MOSS) for devices with two sensors:
an accelerometer and a gyroscope, which are available on most
mobile devices. Accelerometer readings from multiple mobile
devices on a human subject are used to achieve space synchroniza-
tion when the human subject is moving forward, such as walking
and running. Gyroscope readings from multiple mobile devices
on a human subject are used to maintain space synchronization
when the human subject stops moving forward, which means that
we can no longer obtain the consistent acceleration caused by
body moving forward. Experiment results show that our MOSS
scheme can achieve an average angle deviation of 9.8◦ and an
average measurement similarity of 97%.

Index Terms— Space synchronization, mobile device.

I. INTRODUCTION

A. Motivation

NOWADAYS, the mobile devices equipped with inertial
sensors are widely used to perform motion sensing and

human computer interaction [1]–[4]. For example, in virtual
reality games, a moving human subject may be equipped with
multiple mobile devices on different body parts (such as heads,
arms, and legs) to capture the human’s movement, as shown
in Fig. 1(a) . In this case, it is very essential to fuse the
readings from multiple mobile devices based on synchronized
coordinates, so that they can be combined together to recover
better orientation of the users’ body parts and recognize the
human activities.

In this paper, we investigate the problem of space synchro-
nization, i.e., synchronizing inertial readings from multiple
mobile devices in the spatial dimension, in other words,
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Fig. 1. Synchronize inertial readings from multi-devices in spatial dimension.
(a) Synchronize 3-D coordinates among devices in VR games. (b) Local
coordinates vs synchronized coordinates.

multiple mobile devices are space synchronized to have the
same 3-D coordinates except that each device is the origin
of its corresponding coordinate. A modern mobile device is
often equipped with an Inertial Measurement Unit (IMU),
which typically includes an accelerometer and a gyroscope,
and sometimes a magnetometer as well for advanced models.
The readings from IMU sensors are based on a local coordinate
determined by the orientation of its body frame (or its mother
board to be more precise). Fig. 1(b) shows the two local
coordinates of a smartphone and a smartwatch, respectively,
in solid arrows. For the multiple mobile devices placed at dif-
ferent body parts of a human subject, due to the different orien-
tation of their body frames, their local coordinates are mostly
likely different. Without space synchronization, the readings
from the IMU sensors of different mobile devices are difficult
to be correlated with each other. With space synchronization,
these readings can be used jointly to better describe human
movements. We call the synchronized coordinate of a device as
its global coordinate. Fig. 1(a) and (b) shows the synchronized
coordinates of the devices in dashed arrows. Space synchro-
nization allows us to capture the movement of different body
parts in the aligned 3-D coordinates, which helps to build more
accurate 3-D models of human actions.

A straightforward solution to mobile device space syn-
chronization is to use compasses or magnetometer sensors in
mobile devices. Magnetometer readings allow each device to
obtain the same magnetic field direction of the earth. Together
with the same gravity direction of each device, all devices
can therefore achieve space synchronization. This solution,
although simple, have two weaknesses. First, most state-of-
the-art wearable devices (such as Apple Watch S1, Samsung
Watch Gear 2, and MOTO Watch 360) are not equipped
with magnetometer sensors; in comparison, accelerometer and
gyroscope sensors are available in most wearable devices. Sec-
ond, magnetometer readings are often notoriously inaccurate
in indoor environments [5], due to the magnetic interferences
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caused by the massive steel embedded in building concrete
structures and other metallic objects. Our empirical study
further shows that the magnetometer readings are not reli-
able in typical indoor environment. Specifically, for differ-
ent positions in the indoor environment, the angle deviation
between the magnetometer measurement and the ground-truth
north can be as large as 110◦, the standard deviation of the
magnetometer readings can be as large as 26.7◦; for a fixed
position in the indoor environment, with the interferences from
different sources such as smart phone, earphone, metal plate,
and magnet, the angle deviation between the magnetometer
measurement and the ground-truth north can be as large as
133.6◦, the standard deviation of the angle deviation can be
as large as 86.3◦.

B. Proposed Approach

In this paper, we propose a scheme called MObile Space
Synchronization (MOSS) for devices with two sensors: an
accelerometer and a gyroscope, which are available on most
mobile devices. Accelerometer readings from multiple mobile
devices on a human subject are used to achieve space synchro-
nization when the human subject is moving forward, such as
walking and running. Our insight on using accelerometer sen-
sors to achieve space synchronization is that when the human
subject moves forward, all attached mobile devices experience
the same acceleration along the moving direction of the torso,
which we call consistent acceleration. Although these mobile
devices also experience various other accelerations due to
intra-body movements (such as arm and leg movements),
which we call inconsistent acceleration, they are usually much
smaller than the consistent acceleration because intra-body
movements are usually orders of magnitude smaller than the
forward movement. When the human subject is moving for-
ward, the approach of simply adding an inertial sensor on the
human chest to directly measure the consistent acceleration
seems to be a feasible solution, however, it cannot work
effectively due to the following reasons: First, it still requires
the other mobile devices to synchronize with this specified
device in the spatial dimension, as the consistent acceleration
can only be extracted directly from this device rather than
all devices. Usually a magnetometer is essentially required
for all devices to achieve this synchronization, however, this
is contradictory to the situation we need to tackle. Second,
even for this specified device, it may lead to inaccuracy
in directly measuring the consistent acceleration, since the
moving human body may usually introduce some inconsistent
accelerations, more or less, into the measurements on the hor-
izontal plane. Hence, in this paper, we choose to compute the
forwarding direction by extracting the consistent acceleration
from the accelerometer readings. We can treat the inconsistent
acceleration as noises and use signal processing techniques
to filter them out mostly. Moreover, using a low pass filter
such as a Butterworth filter, the gravitational acceleration
can be extracted from the acceleration measurements in the
local coordinate system. Therefore, based on the forwarding
direction and the gravitational direction as reference axes,
the third axis can also be obtained since it is perpendicular to
the plane defined by these two reference axes. Thus, according

to these three axes, we can build the synchronized coordinates
with each device as the origins.

Furthermore, we use gyroscope readings from multiple
mobile devices on a human subject to maintain space syn-
chronization when the human subject stops moving forward,
which means that we can no longer obtain the consistent
acceleration caused by forward body motion. After the human
subject stops moving forward, his body parts may still slightly
move or rotate. The gyroscope readings of a mobile device
allow us to continuously track the small rotations along
the three axes of the device’s local coordinate. We derive
a real-time rotation matrix corresponding to the orientation
variation by integrating the rotation rates in different axes over
time. Leveraging the stability of the gravity direction in the
synchronized coordinates, we further calibrate the estimated
rotation matrix from gyroscope tracking. Thus, we are able to
maintain space synchronization even after the human subject
stops moving.

C. Technical Challenges and Solutions

The first challenge is to extract the consistent acceleration
of body movement when the human subject moves forward.
This is challenging because both consistent and inconsistent
accelerations are mixed together. As the mobile devices are
attached to different body locations of the human subject, they
perceive rather different accelerations in both the direction and
magnitude during human motion. To address this challenge,
we propose a principal component analysis (PCA) based
scheme to remove the inconsistent accelerations from the
observed accelerations. The key observation is that the con-
sistent acceleration contributes to the observed accelerations
of all mobile devices attached to the human subject. In other
words, the observed acceleration signal of each device is the
combination of the consistent acceleration signal, which is
from the forwarding movement and the same for all devices,
and the inconsistent acceleration signal, which is from the
intra-body movement from and unique to the device itself.
Furthermore, we observe that the inconsistent acceleration
from the intra-body movement cancels each other out during
the back and forth movement, and its expected value is close
to 0 within a large enough time interval. Thus, the observed
acceleration signals of multiple devices are strongly correlated,
and therefore we can use PCA-based approach to cancel out
the inconsistent factor and extract the consistent factor.

The second challenge is to address the accumulated errors
in maintaining space synchronization when the human sub-
ject stops moving forward. It is well known that the errors
in gyroscope based oriental tracking accumulate [6], [7].
Furthermore, the errors are further exacerbated by the large
angular velocities and linear accelerations in human body
motion. Current solutions primarily rely on Kalman filters;
however, they only use a single data source from the gyroscope
to calibrate the accumulated errors [8], which is not sufficient
to further reduce the errors in maintaining space synchro-
nization. To address this challenge, we propose a simple
but effective complementary filter to calibrate the gyroscope
tracking based on the stability of the gravity direction. We
propose a rotation model that defines the rotations in the
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orthogonal and parallel directions of the gravity, respectively.
We then use this model to calibrate the gyroscope-based
estimation with the Minimum Mean Square Error (MMSE)
estimator.

D. Summary of Experimental Results

We implemented our MOSS system on mobile devices
including Google Glass and Samsung S5 smart phones. They
are deployed at different body locations of each human subject.
We let the human subjects walk along different types of traces
in outdoor environments with different moving modes, i.e.,
walk, run, and jump. We use two main metrics to evaluate
the performance: (1) angle accuracy: the angle deviation
between the estimated human body movement direction and
the ground truth, and (2) coordinate accuracy: the similarity
between the synchronized coordinate and the ground truth.
Experiment results show that MOSS achieves an average angle
accuracy of 9.8◦ and an average coordinate accuracy of 97%.
A real-world case study with free activities further shows that
MOSS achieves an average angle accuracy of 12◦ and an
average coordinate accuracy of 91%.

II. RELATED WORK

Orientation Estimation: Much work has been done on
estimating the orientation of a mobile device (such as a
smartphone) using accelerometer, gyroscope, and magne-
tometer sensors [2], [6], [9]–[17]. Compared with our work,
most of such work uses magnetometers. For example,
Madgwick et al. [13] proposed a quaternion representation
to incorporate accelerometer and magnetometer readings for
orientation estimation . Zhou et al. [6] used the accelerometer
and magnetometer to assist gyroscope in orientation estimation
by selecting the best sensing capabilities. Gowda et al. [14]
tried to map from a local frame of the sensor to a global frame
of reference, so as to track a ball’s 3D trajectory and spin
with inertial sensors and radios embedded in the ball. Of prior
work in this category, only two systems, Autowitness [18]
and Nericell [19], which finds the rotation matrix between the
local coordinate of a smartphone and the reference coordinate
by the acceleration measurement, did not use magnetometers.
They used a vehicle’s forwarding accelerations (i.e., speeding
up and slowing down) obtained from accelerometer readings.
Compared with our work, they have two key limitations as
they attach mobile devices to moving vehicles rather than
human subjects. First, as there is no intra-body movements
and a vehicle moves much straighter than human moves, they
do not need to deal with our first technical challenge. Second,
as the mobile devices do not move after a vehicle stops, they
do not need to deal with our second technical challenge.

Direction Estimation: Recently some work explored the
estimation of heading directions for dead reckoning-based
navigation schemes [20]–[26]. Compared with our work, most
of such work uses magnetometers to estimate the heading
directions while trying to mitigate the magnetic interference
from indoor environments. For example, WalkCompass used
magnetometers to estimate the walking direction of a human
subject [20]. Walkie-Markie used the magnetometer and gyro-
scopes in smartphones to get the walking direction and turning

Fig. 2. Measurement setup.

angles of a human subject so that the indoor pathway maps
can be obtained [21]. Wang et al. [22] used compasss, gyro-
scopes, and WiFi landmarks to estimate the absolute walking
direction of a human subject. Of prior work in this category,
only the APT system does not use magnetometer sensors [24];
instead, APT uses accelerometer and gyroscope sensors to
obtain the walking direction of a human subject. Compared
with our work, both the WalkCompass and APT does not
address space synchronization among multiple mobile devices
as they use only one smartphone. In contrast, in this paper
we investigate multiple mobile devices instead of one device
to synchronize the inertial readings from multiple devices in
spatial dimension. We propose a more generalized solution
to heading direction estimation for multiple wearable devices
subject to different but correlated accelerations. Our solution
neither relies on the inaccurate magnetometer measurements
nor uses any application specific features.

III. UNDERSTANDING HUMAN MOTIONS

A. Measurements

Measurement Setup: We placed six mobile devices, one
smart glass (Google Glass 2) and five smartphones (Samsung
Galaxy S5), at different body location of a human subject
to continuously collect the inertial measurements in his daily
life. As shown in Fig. 2, the Google Glass was placed on
the head and the five phones were placed at five different
locations on the body. These devices are all equipped with an
accelerometer, a gyroscope, and a magnetometer. We use the
three axes obtained from the magnetometers as the reference
global coordinate.

Measurement of Human Body Movements: We observed that
when the human subject attached with multiple mobile devices
moves forward, the inconsistent accelerations from intra-body
movement have different directions and magnitude. To extract
the consistent and the inconsistent accelerations, we let the
human subject walk along a straight path for 30 seconds. We
attached an additional IMU sensor on the chest to estimate the
ground-truth of the consistent acceleration as the inconsistent
accelerations on the chest is negligible. We collected the
acceleration measurements from the six devices as mixed
accelerations and then extract the inconsistent accelerations
from each device by subtracting the consistent acceleration.
To illustrate the direction and magnitude of both the consistent
and inconsistent accelerations, we plot them as vectors in the
polar coordinate system corresponding to the earth coordinate
system. We plot a vector of the inconsistent acceleration
for every 100 ms during the time interval of 5 seconds.
Fig. 3 shows the directions and magnitudes of the original
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Fig. 3. The directions (◦) and magnitudes (m/s2) of the original/consistent/inconsistent accelerations in different devices. (a) S1. (b) S2. (c) S3. (d) S6.

Fig. 4. The mean and standard deviation of different accelerations. (a) The mixed accelerations (m/s2). (b) The consistent accelerations (m/s2). (c) The
inconsistent accelerations (m/s2).

accelerations, the consistent accelerations, and the inconsistent
accelerations, respectively, with the color green, red and blue.
Without loss of generality, we plot these accelerations in the
polar system for the devices S1, S2, S3 and S6. We observed
that, for the inconsistent accelerations, the average magnitudes
of the inconsistent accelerations are different among different
devices, because they depend on the motion amplitudes in
different body parts. Moreover, the directions of the incon-
sistent accelerations are distributed by and large evenly on
the horizontal plane, because the accelerations of intra-body
movements often mutually offset each other in opposite direc-
tions due to back and forth body part movement such as arm
swing.

We observed that the mean value of inconsistent accel-
erations is close to 0 in each direction for a sufficiently
large time window (such as 10 seconds), although the stan-
dard deviations of inconsistent accelerations are fairly large.
Fig. 4 shows the mean and standard deviation of the mixed,
consistent, and inconsistent accelerations, respectively, in the
forward-back direction and the left-right direction of human
motions. We observed that although the standard deviations
of all accelerations are fairly large, their mean values are all
relatively small. In regard to the inconsistent accelerations,
for both directions, the standard deviations are usually in the
order of 1m/s2. The standard deviations in the forward-back
direction are significantly greater than the left-right direction,
due to the reason that the human subject is moving for-
ward. However, for both directions, the mean values of the
inconsistent accelerations are all in the order of 10−5m/s2.
This implies that, although the inconsistent accelerations have
different directions and magnitudes, the overall impact of the
inconsistent accelerations from the intra-body movement can
be negligible statistically.

B. Modeling of Human Motions

Let fi(t) denote the mixed acceleration measured from
device Di at time t. Here fi(t) consists of consistent

acceleration fc(t) and inconsistent acceleration f′i(t), i.e.,
fi(t) = fc(t)+ f′i(t). The accelerations are originally measured
according to the local coordinate system of the device. As
the human subject is moving, the local coordinate system
is rotating over time relative to the earth coordinate system;
thus, the acceleration measurements cannot describe human
motions consistently. Suppose we can build a fixed coordinate
system relative to the earth coordinate system. For the fixed
coordinate system, we use fi,x(t), fi,y(t), and fi,z(t) to denote
the projections of fi(t) in x, y and z axes, respectively, and
use f ′

i,x(t), f ′
i,y(t), and f ′

i,z(t) to denote the projections of
f′i(t) in x, y, and z axes, respectively. Let the angles between
fc(t) and each x, y and z axis at time t be αi(t), βi(t),
and γi(t), respectively. Since the consistent acceleration fc(t)
has a fixed direction with respect to the coordinate system,
αi(t), βi(t), and γi(t) are all constant values over time; thus,
we denote them as αi, βi, and γi, respectively, for simplicity.
Thus, the direction of fc(t) can be represented as a unit vector
〈cosαi, cosβi, cos γi〉. Let fc(t) denote the magnitude of the
consistent acceleration in the forwarding direction; thus, its
projection on the x, y and z axes are fc(t) cos αi, fc(t) cos βi,
and fc(t) cos γi, respectively. The projections on the three axes
are as follows:

⎧
⎪⎨

⎪⎩

fi,x(t) = fc(t) cos αi + f ′
i,x(t),

fi,y(t) = fc(t) cos βi + f ′
i,y(t),

fi,z(t) = fc(t) cos γi + f ′
i,z(t).

(1)

Fig.5 shows the relationship among fi(t), fc(t), and f′i(t),
as well as the projection of fc(t) on the three axes.

Thus, if we can compute the value of cosαi, cosβi, and
cos γi, we can calculate the direction of the consistent acceler-
ation fc(t) in the corresponding coordinate system. Further, for
any inconsistent accelerations corresponding to the intra-body
movement, we observe that the mean value of the inconsistent
accelerations is close to 0, as long as the time interval
is large enough. The following theorem captures the above
characteristics:
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Fig. 5. fi(t) consists of consistent acceleration fc(t) and inconsistent
acceleration f′i(t), the projection of fc(t) on the x, y and z axes are
fc(t) cos αi, fc(t) cos βi, and fc(t) cos γi, respectively.

Theorem 1: For a fixed coordinate system relative to the
earth coordinate system, for any inconsistent acceleration f′i(t)
caused by intra-body movements, the expected value of f′i(t)
is approximately equal to 0 within a sufficiently large time
interval [ts, te]. That is,

E[f’i(t)] =
1

te − ts

∫ te

ts

f′i(t)dt ≈ 0. (2)

Proof: Without loss of generality, we prove this theorem
for x-axis. Our reasoning is applicable for other axes. Let
Δvi,x denote the change of the relative velocity between
device Di and the body after the intra-body movements
occurred during time interval [ts, te]. According to the rela-
tion between velocity and acceleration, we have Δvi,x =
∫ te

ts
f ′

i,x(t)dt. As body parts move back and forth, the ampli-
tudes of the intra-body movement are usually small and do
not change significantly in any direction. Thus, Δvi,x should
be smaller than a constant threshold C. In general situations,
C ≤ 0.4m/s due to the back-and-forth moving property.

Thus, let Δt = te − ts, for E[f ′
i,x(t)], i.e., the expected

value of the acceleration f ′
i,x(t) during [ts, te], we have

E[f ′
i,x(t)] =

1
Δt

∫ te

ts

f ′
i,x(t)dt =

Δvi,x

Δt
<

C

Δt
. (3)

If the time interval Δt = te − ts is sufficiently larger than
the value of C, then E[f ′

i,x(t)] ≈ 0, e.g., Δt = 20s and
C = 0.4m/s, Δt � C, then E[f ′

i,x(t)] ≤ 0.4
20 m/s2 = 2 ×

10−2m/s2 ≈ 0. �
Theorem 1 implies that, during a sufficiently large time

interval, e.g., 10∼20s, the expected value of the inconsistent
acceleration can be negligible, as the inconsistent accelerations
cancel each other out during the back and forth movements.
This explains our observations that the mean value of the
inconsistent acceleration is in the order of 10−5m/s2.

IV. SPACE SYNCHRONIZATION MODEL

A. Achieve Space Synchronization

The objective of space synchronization for mobile devices
is to align their local coordinate to their global coordinate.
We use the direction cosine representation to quantify the
orientation difference between the local and global coordi-
nates of each device. In the direction cosine representation,
the orientation of the local coordinate relative to the global
coordinate system is specified by a 3 × 3 rotation matrix C,
where each column is a unit vector along one axis in the local
coordinate specified in terms of the global coordinate axes.

Fig. 6. Deriving the global coordinate.

A vector quantity vl defined in the local coordinate system
is equivalent to the vector vg = C · vl defined in the global
coordinate. The inverse transformation is vl = CT · vg as the
inverse of a rotation matrix is equal to its transpose.

For the local coordinate of a device, assuming that we
can extract a constant acceleration as a vector fc from the
acceleration measurements and extract a constant gravitational
acceleration as a vector g from the low pass filter (such as the
Butterworth filter [27]), we can build the global coordinate and
compute the rotation matrix as follows. After we obtain the
gravity vector g, we derive its opposite value and normalize
this vector as zo = −g

‖g‖ , we then set this vector to represent
the global Z-axis as it is in the opposite direction of the
gravitational acceleration. We set the vector zo to represent
to be perpendicular to the horizontal plane. After computing
the cross product y = g × fc, we obtain a vector y that is
perpendicular to the plane determined by the two distinct but
intersecting lines corresponding to g and fc. We normalize this
vector as yo = y

‖y‖ . Since the vector yo is on the horizontal
plane, we set this vector to represent the global Y -axis. After
that, by computing the cross product x = g × y, we obtain a
vector x that is orthogonal to the plane determined by the two
distinct but intersecting lines corresponding to g and y. We
normalize this vector as xo = x

‖x‖ . Since the vector xo is on
the horizontal plane, and it is orthogonal to the global Y -axis
and Z-axis, we set it to represent the global X-axis. After we
obtain the vectors xo, yo, and zo in the local coordinate, which
correspond to the global X , Y , and Z-axes, we can derive the
rotation matrix CT . Fig. 6 illustrates the above process.

B. Maintain Space Synchronization

As the orientation of a device may be continuously chang-
ing, we need to track and update the rotation matrix C over
time. For example, if the rotation matrix at time t is given
by Ct, then the rotation matrix Ct+δt at time t + δt can be
computed as the product of two matrices

Ct+δt = CtAt,t+δt (4)

where At,t+δt is the rotation matrix relating the local coordi-
nate at time t to the one at time t+ δt. To estimate the matrix
At,t+δt, we use gyroscope measurements. According to the
small angle approximation [12], if we use ωx(t), ωy(t), and
ωz(t) to represent the rotation rate of small rotations about its
x, y and z axes between time t and t + δt, then

At,t+δt = exp(
∫ t+δt

t

Ω(t)dt) (5)
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Fig. 7. System architecture.

where

Ω(t) =

⎡

⎣
0 −ωz(t) ωy(t)

ωz(t) 0 −ωx(t)
−ωy(t) ωx(t) 0

⎤

⎦ (6)

We further use Taylor expansion of the exponential term to
approximate the value of exp(

∫ t+δt

t
Ω(t)dt).

As the angular velocity signals obtained from the gyro-
scopes are “integrated” to track and update the rotation matrix,
the errors in the gyroscope signals propagate into the calcu-
lated orientation leading to large cumulative tracking errors.
The tracking errors in the rotation matrix At,t+δt are amplified
in each axis through the exponential function in Eq.(5). The
larger the angular velocities and linear accelerations in the
forward moving direction are, the more the tracking errors
ex(t), ey(t), and ez(t) in that direction. Thus, the rotation

matrix Ât,t+δt derived from gyroscope tracking is prone to
large accumulation of errors after long periods. It is essential
to leverage other measurements (such as the accelerometer
measurements) for further calibration.

V. SYSTEM OVERVIEW

The system architecture is shown in Fig. 7. MOSS con-
sists of two components: a Consistent Direction Estimator
for achieving space synchronization, and a Gyroscope-based
Orientation Tracker for maintaining space synchronization.
Consistent Direction Estimator uses principal component
analysis to extract the magnitude of consistent acceleration
from multiple devices, and further estimate the direction of
consistent acceleration. Combined with the gravity direction
extracted from the acceleration measurements, it generates a
rotation matrix for space synchronization. Gyroscope-based
Orientation Tracker continuously estimates the orientation
variation of the body frame from the gyroscope measurements.
Leveraging the stability of the gravitational accelerations in the
global coordinate, we calibrate the rotation matrix using the
Minimum Mean Square Error (MMSE) estimator.

To perform space synchronization among multiple devices,
MOSS uses a server to communicate with these devices and
process the corresponding measurements. We can set one of
the mobile devices such as a smart phone as the server, as long
as it can communicate with the other devices via wireless
connections, and it has enough computing power for signal
processing. MOSS consists of the following four steps.

(1) Beacon Broadcasting: The server first broadcasts a
synchronization beacon to all devices. All devices start to

record the accelerometer and gyroscope measurements after
receiving this beacon. Let this time be t0.

(2) Local Measurement with Gyroscope Tracking: For each
time t within a time window W , each device Di extracts the
gravitational acceleration gi(t) and the linear acceleration fi(t)
from the acceleration measurements in its local coordinate.
Meanwhile, each device Di tracks the rotation speed ωi(t)
in each axis from the gyroscope, and computes the rotation
matrix Ai

t0,t from time t0 to t. After time window W , device
Di sends the following to the server: the rotation matrix
Ai

t0,t, the gravity gi(t), and the linear acceleration fi(t) for all
t ∈ W .

(3) PCA Analysis: After receiving the responses from all
devices, the server performs PCA to extract the magnitude and
estimates the direction of the consistent acceleration fc(t) in
the local coordinate of each device. With the gravity direction,
it constructs a rotation matrix Ci

t0 for each device at time t0,
and sends Ci

t0 to each device.
(4) Local Rotation Update: Each device Di locally updates

the rotation matrix Ci
t using the matrix Ai

t0,t from gyroscope
tracking, i.e., Ci

t = Ci
t0Ai

t0,t. It then transforms the accelerom-
eter and gyroscope measurements from the local coordinate to
global coordinate.

VI. CONSISTENT ACCELERATION EXTRACTION

As the accelerometer measurements from multi-devices are
highly correlated, we perform Principal Component Analy-
sis (PCA) to extract the consistent acceleration during the
process of moving forward. This consists of three steps:
preprocessing, principal component extraction, and direction
estimation.

A. Preprocessing

Suppose the acceleration measurements fi(t) for each device
Di can be obtained as 〈xi(t), yi(t), zi(t)〉 from the x, y, and
z-axes in its local coordinate Li(t) at time t. Then, we can
use the rotation matrix (Ai

t0,t)T to transform the acceleration
measurements from the current local coordinate Li(t) at time
t to the reference local coordinate Li(t0) at time t0, i.e.,

⎡

⎣
xi(t0)
yi(t0)
zi(t0)

⎤

⎦ = (Ai
t0,t)

T

⎡

⎣
xi(t)
yi(t)
zi(t)

⎤

⎦ (7)

Thus, we obtain the acceleration measurements in the refer-
ence local coordinate, i.e., the local coordinate at time t0,
which is therefore consistent over time.

Further, as we focus on extracting the forwarding accelera-
tions on the horizontal plane, to avoid the interferences such
as the up-and-down accelerations from the vertical direction
during human motions, we project the linear acceleration fi(t)
onto the horizontal plane in the reference local coordinate
system, as shown in Fig. 8.

B. Principal Component Extraction

The acceleration measurements of different axes on multiple
devices are highly correlated, as shown in Eq.(1), because
of the consistent acceleration fc(t). This can be observed



2152 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 5, OCTOBER 2018

Fig. 8. Project acceleration fi(t) onto horizontal plane.

Fig. 9. Correlations among 18 streams of acceleration measurements from
6 devices in 3 axes.

from Fig. 9, which plots the 18 streams of acceleration
measurements from 6 devices in 3 axes within a time inter-
val of 5 seconds. Thus, to effectively extract the consistent
acceleration fc(t), we apply PCA to discover the correlation
among the streams of acceleration measurements. With PCA,
we can track the time-varying correlations among the streams
of acceleration measurements, and extract the principal com-
ponents of these streams. This includes the following three
steps.

(1) Preprocessing: Suppose the number of devices is m,
we organize the data set as a matrix X consisting of p
streams of acceleration measurements in 3 axes of local
coordinate from m devices, where p = 3 × m. Each column
of the matrix X corresponds to one stream of acceleration
measurements within a sampling window of size n. We
choose the default time interval of the sampling window to be
10 seconds as the sampling process should not be too long for
human motions and meanwhile the number of samples is large
enough to ensure accurate correlation estimation. Therefore,
the matrix X is of dimensions n × p. Our solution first
calculates the empirical mean μi along each column of the
data matrix X , and then subtracts the empirical mean vector μi

from each column (i = 1 · · · p).
(2) Covariance Estimation: We calculate the covariance

matrix as XT ×X . The covariance matrix has the dimension
of p × p, where p is the number of streams for acceleration
measurements. Then, we obtain the eigenvectors and eigen-
values of the covariance matrix, and construct the principal
components using the equation xj = X× qj , where qj and xj

are the jth eigenvector and the jth principal components,
respectively.

(3) Consistent Forwarding Acceleration Extraction: We
select the first principal component x1 to estimate the mag-
nitude of the consistent acceleration. We further plot the
PCA results in Fig. 10 to compare with the ground truth of
consistent acceleration. According to the experiment results,
the correlation between the PCA result and the ground truth
is up to 0.961, which implies that we can accurately extract
the consistent acceleration using PCA.

Fig. 10. PCA result vs. ground truth.

C. Direction Estimation

After principal component extraction, we obtain the magni-
tude of the consistent acceleration fc(t), as shown in Fig. 10.
It is known that fc(t) has a fixed direction, i.e., the forwarding
direction, in regard to the reference local coordinate. During
the process of human body movements, the magnitude of fc(t),
i.e., fc(t), keeps changing along or against the fixed direction.
Hence, if we specify the magnitude fc(t) along the fixed
direction as positive value, then the magnitude fc(t) against
the fixed direction can be specified as negative value. Next,
for each device Di, we need to further estimate the direction
of fc(t) in its local coordinate.

According to Theorem 1, the expected value of the incon-
sistent acceleration from intra-body movement, i.e., f ′

i(t),
is approximately equal to 0 in a sufficient large time interval.
It can be regarded as “white noises” in comparison to the
consistent acceleration from the forwarding movement, since
the former is usually orders of magnitude smaller than the
latter. Hence, in order to extract the components of consistent
acceleration in various axes, while eliminating the interference
from the inconsistent acceleration, we can select a sufficiently
large time interval, add up the acceleration measurements for
each axis according to Eq.(1), and obtain the estimate of each
component in the corresponding axis. However, we need to
tackle the following issue: As shown in Fig. 10, while the
human subject is moving forward, the consistent acceleration
fc(t) keeps changing around the zero point even during one
stride. Nevertheless, on the macro level, the moving speed of
human subject usually keeps constant or does not change too
much. This implies that the expected value of fc(t) should
also be close to 0 (it is in the order of 10−3 ∼ 10−2 m/s2

according to the empirical study), when a human subject is
moving in almost constant speed. In this regard, even if the
consistent acceleration fc(t) has a much larger magnitude
than the inconsistent acceleration f′i(t), when we add up the
consistent accelerations, the positive and negative components
cancel each other to approach a rather small value, which
prevents us to distinguish the consistent accelerations from
inconsistent accelerations.

Fortunately, since we can obtain the magnitude of fc(t),
i.e., fc(t), via principal component extraction, by using the
techniques such as linear interpolation, we can identify the
time intervals where the value of fc(t) is positive, we call
these time intervals positive time intervals. Similarly, we can
also identify the negative time intervals where the value of
fc(t) is negative. Fig. 11 shows an example of identifying
the positive time interval according to the PCA results. Then,
for each axis, without loss of generality, we can add up
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Fig. 11. Identify the positive time interval according to the PCA results.

those acceleration measurements only from the positive time
intervals to extract the accumulated positive magnitudes of
the consistent acceleration fc(t). According to the formulation
in Eq.(1), for the accumulated acceleration measurements,
the accumulated positive magnitudes of fc(t) dominates the
result than the accumulated magnitudes of the inconsistent
acceleration f′i(t), which is very close to 0. In this way,
we are able to further estimate the direction of fc(t) in
its local coordinate, according to its positive magnitudes in
different axes. Therefore, we can estimate the direction of fc(t)
according to Theorem 2.

Theorem 2: Let αi, βi and γi be the constant angles
between the consistent acceleration fc(t) and the x, y and z
axes in the reference local coordinate, respectively. Let fc(t)
be the magnitude of fc(t), and fi,x(t), fi,y(t) and fi,z(t) be
the acceleration measurements in the x, y, and z-axes from
the accelerometer, respectively. The direction of fc(t) can be
represented by a unit vector 〈cosαi, cosβi, cos γi〉, where the
value of cosαi, cosβi, and cos γi can be estimated as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

cos α̂i =
E[fi,x(t)]
E[fc(t)]

cos β̂i =
E[fi,y(t)]
E[fc(t)]

cos γ̂i =
E[fi,z(t)]
E[fc(t)]

.

(8)

Proof: Without loss of generality, we prove the equation
cos α̂i = E[fi,x(t)]

E[fc(t)]
. According to Eq.(1), for the x-axis,

fi,x(t) = fc(t) cos α̂i + f ′
i,x(t). After we obtain a sequence of

fi,x(t) from the positive time intervals in a sufficiently large
time window Wp, the sum of fi,x(t) in these positive time
intervals, i.e.,

∑
t∈Wp

fi,x(t), can be depicted as follows:
∑

t∈Wp

fi,x(t) =
∑

t∈Wp

[fc(t) · cos α̂i] +
∑

t∈Wp

f ′
i,x(t).

According to Theorem 1,
∑

t∈Wp
f ′

i,x(t) ≈ 0. Besides,
since fc(t) is extracted from the positive time intervals, then∑

t∈Wp
[fc(t) · cos α̂i] �

∑
t∈Wp

f ′
i,x(t). Thus,

∑

t∈Wp

fi,x(t) ≈
∑

t∈Wp

[fc(t) · cos α̂i].

Moreover, since cos α̂i is constant, then,

cos α̂i ≈
∑

t∈Wp
fi,x(t)

∑
t∈Wp

fc(t)
≈ E[fi,x(t)]

E[fc(t)]
.

Similarly, we can prove that cos β̂i = E[fi,y(t)]
E[fc(t)]

and

cos γ̂i = E[fi,z(t)]
E[fc(t)] . �

Fig. 12. Estimate the rotation matrix At,t+δt.

According to Theorem 2, our solution of estimating the
direction of fc(t) is as follows: First, we select a sufficiently
large time interval to obtain the corresponding PCA results,
and identify the positive time intervals from the PCA results
where the accelerations are greater than 0. Then, for each axis
of the reference local coordinate, we compute the expected
value of the acceleration measurements within the above posi-
tive time intervals. After that, we can compute the angles αi, βi

and γi according to Eq. (8), and estimate the direction of fc(t).
As the value of E[fc(t)] is the same in all three formulations
in Eq. (8), it is actually unnecessary to compute the value
of E[fc(t)]. As a matter of fact, according to the previous
analysis, we have

√
E[fi,x(t)]2 + E[fi,y(t)]2 + E[fi,z(t)]2 ≈

E[fc(t)].

VII. GYROSCOPE BASED ORIENTATION TRACKING

A. Rotation Based Modeling

Our solution is based on the observation that the extracted
direction of gravity is stable in the global coordinate. This
observation can be further leveraged to calibrate the rotation
matrix Ât,t+δt derived from gyroscope based tracking. For
device Di, suppose that the gravity is denoted as a vector
g = 〈gx(t), gy(t), gz(t)〉 in the local coordinate system Li(t)
at time t. Then, after a period of tracking, the gravity could
be denoted as a different vector g’ = 〈gx(t + δt), gy(t +
δt), gz(t + δt)〉 in the local coordinate system Li(t + δt) at
time t + δt. The difference between g and g’ is caused by
the rotation of the body frame from time t to time t + δt,
we denote the corresponding rotation matrix as At,t+δt. Thus
we have g’ = At,t+δtg. According to the above relationship,
the rotation matrix At,t+δt can be computed as follows. As
shown in Fig. 12, note that due to the rotation of the body
frame, there may exist a non-zero angle θ between the vectors
g’ and g, it can be calculated as: θ = arccos( g·g’

‖g‖|g’‖ ), where
the · operation refers to the inner product of the two vectors.
During the process of rotation, to align the vector g to the
vector g’, it is essential to rotate axis u by an angle θ. The
rotation axis u is orthogonal to the plane where the vectors
g and g’ lies on. Then, the rotation axis u can be obtained
by computing the cross product of g and g’: u = g×g’

‖g×g’‖ .
We call the above rotation as the vertical rotation. Therefore,
according to the Rodrigues’ rotation formula [28], we compute
the corresponding rotation matrix R as:

R = I + (sin θ)U + (1 − cos θ)U2 (9)

where I is a 3×3 unit matrix, and U denote the cross-product
matrix for vector u.
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By now we have obtained the rotation matrix by rotating the
body frame to align the previous gravity vector g to the current
gravity vector g’ in the vertical direction. However, there still
exists another degree of freedom in the horizontal direction
because the body frame can rotate about the current gravity
vector g’ by any angle θ′ on the horizontal plane. Thus,
we need to further compute the rotation matrix R’ with the
rotation angle θ′ on the horizontal plane to accurately estimate
the rotation matrix At,t+δt. As the body frame is rotated
around the current gravity vector g’, then the rotation axis
can be defined by a unit vector u’ by normalizing the gravity
vector g’, i.e., u’ = g’

‖g’‖ . According to the Rodrigues’ rotation
formula, suppose the rotation angle in the horizontal plane
is θ′, we compute the corresponding rotation matrix R’(θ′) as
follows:

R′(θ′) = I + (sin θ′)U′ + (1 − cos θ′)U′2 (10)

where I is a 3×3 unit matrix, and U′ denote the cross-product
matrix for the vector u’. We call the above rotation as the
horizontal rotation. Therefore, the rotation matrix Ât,t+δt can
be estimated as follows:

At,t+δt(θ′) = RR′(θ′) (11)

Fig. 12 illustrates the two rotations for estimating the rotation
matrix Ât,t+δt.

B. Calibration With MMSE Estimator

According to the observations in previous work [6], [7]
and the analysis in Section 4, we know that after a long
period of tracking, there could be a fairly large error for
the estimator Ât,t+δt of gyroscope tracking. Fortunately,
we have already calculated a rotation matrix At,t+δt(θ′)
from the rotation-based model. As the gravity direction can
be accurately extracted through low pass filters such as the
Butterworth filter, we actually obtain an accurate formulation
of the rotation matrix At,t+δt with an unknown variable θ′.
Thus, to estimate the rotation angle θ′ according to the
estimator Ât,t+δt from the gyroscope tracking, we leverage the
Minimal Mean Squared Error (MMSE) estimator. We define
the estimation error matrix as E = Ât,t+δt − At,t+δt, where
the mean squared error (MSE) e is:

e(θ′) =
3∑

i=1

3∑

j=1

(Ei,j(θ′))2 =
3∑

i=1

3∑

j=1

(Âi,j − Ai,j(θ′))2

We then compute the optimal value of θ′ that achieves the
minimal mean squared error for the estimator Ât,t+δt:

θ′∗ = argminθ′e(θ′) (12)

Thus, after computing the optimal value θ′∗, we use the
rotation matrix At,t+δt(θ′∗) as the calibrated estimator for the
rotation matrix At,t+δt.

VIII. DISCUSSIONS AND LIMITATIONS

A. Discussions

Timing for Space Synchronization: During the process of
human motions, we need to find the time that all devices

experience a consistent acceleration. We address this issue
based on the observation that if multiple devices are subject
to a consistent accelerations, then all the accelerometers of
the devices should experience similar accelerations at a coarse
level [29], [30], as the accelerations due to human motions are
likely to dominate the accelerations caused by other intra-body
motions. Thus, for each pair of devices, we compute the cor-
relation of the measured accelerations at 1-10 Hz frequencies,
which are the frequency range of human motions. We use a
Support Vector Machine based classifier to determine whether
all devices are subject to a consistent acceleration according
to their pair-wise correlations.

Direction Change of Consistent Acceleration: During the
process of human motions, the consistent acceleration could be
also changing by the human subject over time. The change of
the direction could be performed intentionally when the human
subject is turning around or unintentionally when the human
subject is slightly off the straight path. In such situations,
it is essential to synchronize the global frames derived from
the consistent acceleration with different directions; otherwise,
the global coordinates cannot be consistent with each other.
We address this issue as follows: Suppose that all devices are
subject to two different forwarding accelerations with different
directions at time tk−1 and tk, respectively. After PCA,
for each device, we obtain the two forwarding accelerations
based on the reference local coordinate, i.e., fc(tk−1) and
fc(tk), respectively. We calculate the angle deviation between
fc(tk−1) and fc(tk) on the horizontal plane as ηi for each
device. After that, we compute the average value η̄ from all
m devices to mitigate the variances in estimating the angle
deviation. Then, we use the angle deviation η̄ as the direction
change of the consistent acceleration to further calibrate the
rotation matrix for space synchronization.

B. Limitations
Limitation to the Potential Application Scenarios: MOSS

uses an estimator to derive a consistent direction on the
horizontal plane, such as the moving direction. Combined
with the gravity direction, MOSS build synchronized coor-
dinates among different mobile devices. Hence, a consistent
acceleration on the horizontal plane for multiple devices is
essential for space synchronization. This requirement may not
be satisfied for all applications. In some applications, e.g.,
when a human subject is jumping up and down with multiple
devices, the consistent acceleration only exist on the vertical
plane, which does not help to build synchronized coordinates
among these devices. Besides, even if there exists a consistent
acceleration for multiple devices on the horizontal plane, when
the consistent acceleration changes from time to time in a
frequent manner, the time window to collect the samplings of
the acceleration might be too small, such that the consistent
acceleration cannot be effectively extracted from the limited
time window. Thus, the application scope of MOSS does have
some limitations in the property of consistent acceleration.

Vulnerability to Sudden Activities: MOSS achieves good
performance when the human subject is performing regular
free activities, such as walking, jumping, and running, in which
the arm’s or hand’s movements in these activities are relatively
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simple and regular. However, in more general activities, e.g.,
the activities for VR applications, in which the motions can
lead to sudden, rapid and irregular acceleration and orientation
changes, MOSS may not achieve ideal performance for the
following reasons: 1) In sudden activities, the inconsistent
accelerations can be comparable to the consistent acceleration
in the magnitude of the movement, such that the consistent
acceleration cannot be effectively extracted. Besides, as afore-
mentioned, the time window for the consistent acceleration can
be too small, this further increases the difficulty to extract the
consistent acceleration. 2) Sudden activity may lead to large
errors in the inertial measurements including the accelerometer
measurements and gyroscope measurements. The errors in
the accelerometer measurements further lead to difficulty in
achieving space synchronization, whereas the errors in the
gyroscope measurements further lead to difficulty in maintain-
ing space synchronization. Therefore, MOSS is more or less
vulnerable to the sudden activities due to the above reasons.

IX. PERFORMANCE EVALUATION

A. Implementation and Setup

Hardware: We implemented MOSS on 1 smart glasses
(Google Glass 2) and 5 smart phones (SAMSUNG Galaxy S5).
They were placed on a human subject as shown in Fig. 2.
These devices were connected to an Android smartphone
(SAMSUNG Galaxy S5) via the Bluetooth 4.0 interface,
i.e., S2 in Fig. 2. The Android smartphone S2 continuously
collected the accelerometer and gyroscope measurements from
these devices, and processed these measurements.

Setup: We let 5 volunteers move along three different
straight paths in outdoor environment. They moved along the
paths in three different modes: 1) walk: the human subject
walked in normal speed (0.5∼1 m/s) with small-amplitudes;
2) run: the human subject ran in fairly fast speed (2∼3m/s)
with large-amplitudes; 3) jump: the human subject jumped
forward with large-amplitudes. For each path, we collected
20 traces for each moving mode. In each trace, we col-
lected the inertial measurements from the accelerometers,
gyroscopes, and magnetometers of all devices for a maximum
time interval of 30 seconds. We collected a total of 120 traces
of inertial measurements. To validate the performance against
the ground truth, we extracted the magnetic direction and
gravity direction from the inertial measurement, and used them
to build an earth coordinate system as the reference coordinate
system E.

Metrics: We used two metrics to evaluate MOSS: (1) Angle
Accuracy: the angle deviation between the estimated forward-
ing direction and the ground truth, (2) Coordinate Accuracy:
the correlations between the measurements from the synchro-
nized coordinate and ground truth.

B. Forwarding Direction Estimation

We compared our solution with two heuristic solutions using
Kalman filter as baseline solutions, i.e.,

1) MeanAcc: it uses Kalman filter [31] to filter the inertial
readings first, and then estimates the forwarding direction by
averaging the acceleration in three axes of the body frame

Fig. 13. Inertial readings with/without Kalman filter.

within a time window, respectively. Take the acceleration in
x-axis as an example, we use xk−1|k−1 to denote the estimated
acceleration at time tk−1. Then, we use Kalman filter to
estimate the true acceleration xk|k at time tk, while combining
the last estimated acceleration xk−1|k−1 at time tk−1 and the
measurement zk from the accelerometer at time tk. Kalman
filter is a recursive estimator, which contains a prediction phase
and an update phase in each recursive process.

In the prediction phase, we use xk−1|k−1 to predict the
next acceleration as xk|k−1, i.e., xk|k−1 = xk−1|k−1. The
estimate covariance Pk|k−1 = Pk−1|k−1 +Q, where Pk−1|k−1

means the estimate covariance in the last update phase, while
Q means the covariance of the process noise in the prediction
phase. Here, the process noise is assumed as Gaussian white
noise N(μQ, Q)(Q = 1.0004 in our implementation).

In the update phase, we combine the predicted acceleration
xk|k−1 and the measurement zk to update the estimate of the
acceleration xk|k at time tk, i.e., xk|k = xk|k−1 + Kk(zk −
xk|k−1). Here, Kk means the Kalman gain at time tk, and it
can be calculated as follows: Kk = Pk|k−1(Pk|k−1 + R)−1,
where R means the covariance of the measurement noise
in the update phase, and the measurement noise is assumed
as Gaussian white noise N(μR, R) (R = 0.95976 in our
implementation). In the update phase, the estimate covariance
Pk|k = (1 −Kk)Pk|k−1. Therefore, the optimal estimation of
acceleration in x-axis at time tk is xk|k . Similarly, we can
obtain the optimal estimation of the acceleration in y-axis,
and z-axis at time tk as yk|k and zk|k, respectively. After that,
we average the values of xk|k , yk|k, zk|k within a time window,
respectively, to infer the forwarding direction. The solution is
effective when the body frames of the devices do not change
too much during the moving process.

2) RefMeanAcc: it estimates the forwarding direction by
averaging the acceleration measurements within a time win-
dow respectively in three axes of the reference local coordi-
nate. The main difference between MeanAcc and RefMeanAcc
is that RefMeanAcc transforms all the acceleration from the
body frame to the reference local coordinate. After that,
RefMeanAcc calculates the acceleration in each axis based on
Kalman filter [31] in the same way described in MeanAcc.
The solution is effective even when the body frames of the
devices keep changing, using the gyroscope tracking.

Experimental results show that Kalman filter can effectively
remove the outliers or mitigate the jitters of the raw iner-
tial readings. Fig. 13 shows the corresponding inertial readings
with or without the Kalman filter. Note that in comparison
to the raw inertial measurement, the inertial readings after
the Kalman filter are more smooth and have less jitters. It
implies that, for the situations where the human motions lead
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Fig. 14. Evaluate the accuracy of consistent forwarding direction estimation. (a) Angle accuracy for different forwarding direction estimators. (b) Angle
accuracy for different moving modes. (c) Angle accuracy with different number of devices. (d) Coordinate accuracy for different forwarding direction estimators.
(e) Coordinate accuracy for different moving modes. (f) Coordinate accuracy with different number of devices.

Fig. 15. Evaluate the accuracy of gyroscope-based orientation tracking. (a) Error accumulation over time for different solutions. (b) Coordinate accuracy for
orientation tracking after different time intervals. (c) Coordinate accuracy for orientation tracking in different moving modes.

to sudden, rapid and irregular acceleration and orientation
changes, the Kalman filter-based solution can effectively filter
the corresponding inertial readings such that the performance
cannot be degraded too much.

Experimental results show that MOSS achieves average
angle accuracy of 9.8◦ for all devices in different moving
modes and with different time windows. We first evaluated
MOSS when the human subject is walking. Fig. 14(a) plots
the angle deviation between the estimated forwarding direction
and the ground truth, where we show the mean and standard
deviation for all six devices. For MOSS, the average angle
deviation in six devices are all less than 15◦ while the standard
deviations are usually less than 9◦. For both MeanACC and
RefMeanACC, the average angle deviations are much greater
than MOSS, besides, they all have much greater variances
than MOSS. We further evaluated the average angle deviation
respectively in walk, run, and jump, as shown in Fig. 14(b).
We observed that MOSS achieves fairly good performance in
angle accuracy for all three modes, which implies that MOSS
is not very sensitive to the exact moving mode. Specifically,
MOSS achieves best performance in the jump mode, as it
generates larger consistent forwarding accelerations to assist
space synchronization. The performance in the run mode
degrades to some extent, as it generates larger inconsistent
accelerations due to larger movements of the limbs.

Experimental results show that MOSS achieved average
coordinate accuracy of 97% for all devices in different moving
modes and with different time windows. We first evaluated the
performance when the human subject is walking. Fig. 14(d)
plots the correlations of measurements from the synchronized

coordinate and ground truth. For MOSS, the average correla-
tions from six devices are all greater than 95%. For MeanACC,
most of the similarities are less than 60%, the similarity in S4

is even as low as 49%. For RefMeanACC, the performance
is increased to some extent, however, the average similarity is
only 73%. We further evaluated the correlations of measure-
ments in different moving modes as shown in Fig. 14(e).
MOSS achieves good performance in measurement correla-
tions for all three modes.

Experimental results show that, when the number of devices
is varied from 3∼6, MOSS achieved fairly good performance
in average angle accuracy and average coordinate accuracy.
We vary the number of devices from 3 to 6, and evaluate
the angle accuracy and coordinate accuracy, respectively. As
shown in Fig. 14(c) and Fig. 14(f), it is found that, when the
number of devices is decreased from 6 to 3, both the angle
accuracy and coordinate accuracy is decreased accordingly,
e.g., when the number of devices is decreased from 6 to 3,
the average angle deviation is increased from 9.8◦ to 33◦ and
the average similarity is is decreased from to 97% to 70%.
This is caused by the reduced number of streams in the PCA
process. Nevertheless, it still achieves fairly good performance
on the whole.

C. Gyroscope-Based Orientation Tracking
We implemented the following solutions for performance

comparison: 1) Gyroscope Tracking: the orientation tracking
scheme purely based on the gyroscope measurements [12].
2) Reference Complementary Filter: a common complemen-
tary filter combining the accelerometer and gyroscope data
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Fig. 16. The average power of different working modes.

to track the orientation [32]. 3) Complementary Filter: our
solution of the complementary filter designed in Section 7.

Experimental results show that MOSS achieves average
angle accuracy of 19◦ in orientation tracking after 30 seconds.
Specifically, MOSS can effectively control the error accu-
mulations for gyroscope based tracking in different moving
modes and with different time intervals. To evaluate the error
accumulation over time for different solutions, we evaluated
the angle deviation of the gravity and magnetic direction,
respectively, in a reference coordinate so as to measure the
error accumulations in the vertical and horizontal directions,
respectively. Fig. 15(a) plots the error accumulation in ver-
tical and horizontal directions. Without loss of generality,
we selected the measurements from the device S4 as an
example. We observed that in both directions, the errors
of both the gyroscope tracking and the reference comple-
mentary filter keep increasing over time, whereas the error
of our complementary filter does not accumulate over time.
After 30 seconds, the errors of the former two solutions are
over 110◦, whereas the error of MOSS is no greater than 20◦.

Experimental results show that MOSS achieves average
coordinate accuracy of 85% in orientation tracking after
30 seconds. Specifically, MOSS achieves a high level of
measurement correlations for gyroscope based tracking in
different moving modes and with different time intervals. We
evaluated the measurement correlations from the synchronized
coordinate and ground truth after different time intervals
in Fig. 15(b). As the time interval increases, we observed
that the correlations of both gyroscope tracking and reference
complementary filter keep decreasing, whereas the correlation
of our solution always maintains at a high level. We further
evaluated the measurement correlations in different moving
modes in Fig. 15(c). For the run mode, the correlations of
both gyroscope tracking and reference complementary filter
are greatly reduced in comparison with the walk mode, which
is due to the error accumulations caused by the large angular
velocities and linear accelerations. Nevertheless, the average
correlation of MOSS maintains to be 85% and 81%, respec-
tively, in both walk and run mode.

D. Energy Consumption
Experimental results show that MOSS achieves average

power of 1440∼1650mW in PCA-based synchronization and
162∼213mW in gyroscope-based tracking. Specifically, we use
the Monsoon power monitor [33] to evaluate the power
of PCA-based synchronization and gyroscope-based track-
ing, respectively, in the Samsung S5 platform and Samsung
Note 4 platform. For each platform, we respectively eval-
uate the power of three processing modes, i.e., 1) Sensor
off : all the sensors including the screens are turned off;

2) PCA-based synchronization: PCA is used to achieve space
synchronization with inertial sensors turned on; 3) Gyroscope-
based tracking: gyroscope-based tracking is used to maintain
space synchronization with inertial sensors turned on. As
shown in Fig.16, it is found that the PCA-based synchroniza-
tion has average power of 1440∼1650mW, which is much
larger than the power of the other two modes. However,
since the PCA-based synchronization is only used to achieve
space synchronization from time to time, it often occupies a
small portion of the overall duration, e.g., 5%, the gyroscope-
based tracking is used to maintain space synchronization in
the rest of the overall duration, the energy consumption of
PCA-based synchronization can be effectively amortized by
the gyroscope-based tracking for energy efficiency.

X. CASE STUDY: SPACE SYNCHRONIZATION

VIA FREE ACTIVITIES

We performed space synchronization for multiple devices
under a more real scenario, i.e., the human subject carried six
mobile devices in different parts of his/her body, and moved
freely in the outdoor environment. Similar to the setup in
Section 9.2, we let the volunteers move along different straight
paths in outdoor environment. The only difference is that the
human motion can be a combination of walk, run, and jump
in any arbitrary approach. We used the consistent forwarding
acceleration to achieve space synchronization when the human
subject was moving forward. Moreover, during the moving
process, the human subject could stop moving forward and
take a break, while his/her limbs keep moving. We used the
gyroscope tracking to maintain space synchronization when
the human subject stopped moving forward. We collected a
total of 30 traces from 5 volunteers for performance evaluation.

A. Space Synchronization Accuracy
Without loss of generality, we selected an example mov-

ing trace and target one of the six devices, i.e., S4, and
continuously monitored the angle/coordinate accuracy of our
MOSS scheme. The sampling time window was set to 3s.
Fig. 17 shows the time intervals of the specified movements
and the corresponding experiment result. For the angle accu-
racy, we observed that the angle deviation is continuously
changing over time. During the time interval of walk, run, and
jump, the angle deviation varies around the average value of
9◦. During the time interval of rest, the angle deviation slightly
increases along with time, due to the loss of the consistent
forwarding acceleration. Nevertheless, the angle deviations are
all less than 18◦. For the coordinate accuracy, we observed that
the similarity is also changing over time, nevertheless, they are
all greater than 81%.

We then evaluated the performance of the consistent for-
warding direction estimation (CFDE) and the gyroscope-based
orientation tracking (GOT), respectively, in a statistical
approach. Fig. 18 shows the experiment results during the
compound moving process. For the performance of CFDE,
as shown in Fig. 18(a), the angle accuracy of all devices are
less than 17◦, while the average accuracy is 12◦, even if the
moving process is mixed with different kinds of movements.
In Fig. 18(b), the coordinate accuracy of all devices are greater



2158 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 5, OCTOBER 2018

Fig. 17. Experiment results. (a) An example process of human movement.
(b) The variation of angle/coordinate accuracy.

Fig. 18. Accuracy evaluation. (a) Angle accuracy of CFDE. (b) Coordinate
accuracy of CFDE. (c) Angle accuracy of GOT. (d) Coordinate accuracy of
GOT.

than 87%, while the average coordinate accuracy is 91%. For
the performance of GOT, as the human subject stops moving
forward, we evaluated the accuracy after a time interval
of 30 seconds. As shown in Fig. 18(c), the angle accuracies
of all devices are less than 26◦, while the average accuracy
is 21◦, even if the time interval is as long as 30s. In Fig. 18(d),
the coordinate accuracies of all devices are greater than 80%,
while the average coordinate accuracy is 84%.

B. Activity Recognition Accuracy

Based on the synchronized coordinates, we further eval-
uate the performance in activity recognition, by using the
methods of Dynamic Time Warping (DTW) and Random
Forest (RF). Specifically, we let 10 volunteers perform 10 cat-
egories of activities, including Dumbbell Triceps Exten-
sion (DTE), Dumbbell Lateral Raise (DLR), Upright Barbell
Row (UBR), Cable Crossover (CC), Butterfly (BF), Dumbbell
Flies (DF), Rope Skipping (RS), Dumbbell Curl (DC), Ping-
pong Swing (PS), and Badminton Swing (BS). In order
to evaluate the impact on the recognition accuracy from
the space synchronization, we plot the confusion matrix of
activity recognition, respectively, based on Compass syn-
chronized coordinates and MOSS synchronized coordinates.
Fig. 19 shows the experiment results. Note that in regard
to the DTW method, the average recognition accuracy is
84.6% for the Compass synchronized coordinate, whereas

Fig. 19. Activity recognition accuracy. (a) DTW-based Recognition based
on Compass sychronization. (b) DTW-based Recognition based on MOSS
sychronization. (c) RF-based Recognition based on Compass sychronization.
(d) RF-based Recognition based on MOSS sychronization.

the average recognition accuracy is 84.2% for the MOSS
synchronized coordinate. In regard to the Random For-
est method, the average recognition accuracy is 85.6% for
the Compass synchronized coordinate, whereas the average
recognition accuracy is 73.2% for the MOSS synchronized
coordinate. This implies that the recognition performance is
not dramatically degraded based on MOSS synchronization,
since MOSS achieves fairly good performance in space syn-
chronization.

XI. CONCLUSION

We made three key contributions in this paper. First,
we investigate the problem of space synchronization for
mobile devices. Second, we propose the MOSS scheme to
achieve space synchronization among multiple mobile devices.
In particular, we propose a consistent direction estimator
to achieve space synchronization, and a gyroscope based
orientation tracker to maintain space synchronization. Third,
we implemented MOSS on COTS mobile devices, and the
experiment results show that MOSS achieves an average
angle accuracy of 9.8◦ and an average coordinate accuracy
of 97%.
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