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Abstract—Due to the sudden movement during the camera shoot, the videos retrieved from the hand-held mobile devices often suffer
from undesired frame jitters, leading to the loss of video quality. In this paper, we present a video stabilization solution in mobile devices
via inertial-visual state tracking. Specifically, during the video shoot, we use the gyroscope to estimate the rotation of camera, and use
the structure-from-motion among the image frames to estimate the translation of camera. We build a camera projection model by
considering the rotation and translation of the camera, and the camera motion model to depict the relationship between the
inertial-visual state and the camera’s 3D motion. By fusing the inertial measurement (IMU)-based method and the computer vision
(CV)-based method, our solution is robust to the fast movement and violent jitters, moreover, it greatly reduces the computation
overhead in video stabilization. In comparison to the IMU-based solution, our solution can estimate the translation in a more accurate
manner, since we use the feature point pairs in adjacent image frames, rather than the error-prone accelerometers, to estimate the
translation. In comparison to the CV-based solution, our solution can estimate the translation with less number of feature point pairs,
since the number of undetermined degrees of freedom in the 3D motion directly reduces from 6 to 3. We implemented a prototype
system on smart glasses and smart phones, and evaluated the performance under real scenarios, i.e., the human subjects used
mobile devices to shoot videos while they were walking, climbing or riding. The experiment results show that our solution achieves 32%
better performance than the state-of-art solutions in regard to video stabilization. Moreover, the average processing time latency is
32.6ms, which is lower than the conventional inter-frame time interval, i.e., 33ms, and thus meets the real-time requirement for online
processing.

Index Terms—Video Stabilization, Mobile Device, 3D Motion Sensing, Inertial-Visual State Tracking
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1 INTRODUCTION

DUE to the proliferation of mobile devices, nowadays
more and more people tend to use their mobile devices

to take videos. Such devices can be smart phones and smart
glasses. However, due to the sudden movement from the
users during the camera shoot, the videos retrieved from
such mobile devices often suffer from undesired frame
jitters. This usually leads to the loss of video quality.
Therefore, a number of video stabilization techniques are
proposed to remove the undesired jitters and obtain stable
videos [1], [2], [3], [4], [5], [6], [7]. Recently, by leveraging the
embedded sensors, new opportunities have been raised to
perform video stabilization in the mobile devices. For the
mobile devices, conventional video stabilization schemes
involves estimating the motion of the camera, smoothing
the camera’s motion to remove the undesired jitters, and
warping the frames to stabilize the videos. Among these
procedures, it is especially important to accurately estimate
the camera’s motion during the camera shoot, since it is a
key precondition for the following jitters removal and frame
warping.

Conventionally, the motion estimation of the camera in
3D space is either based on the inertial measurement-based
techniques [8], [9], [10] or the computer vision-based tech-
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niques [3], [4]. The inertial measurement-based approaches
mainly use the built-in inertial measurement unit (IMU)
to continuously track the 3D motion of the mobile device.
However, they mainly focus on the rotation while ignoring
the translation of the camera. The reason is two folds: First,
the gyroscope in the IMU is usually able to accurately
track the rotation, whereas the accelerometer in the IMU
usually fails to accurately track the translation due to the
large cumulative tracking errors. The computer vision (CV)-
based approaches mainly use the structure-from-motion
[11] among the image frames to estimate both the rota-
tion and translation of the camera. Although they achieve
enough accuracy for the camera motion estimation, they
require plenty of feature point pairs and long feature point
tracks. The requirement of massive feature points for mo-
tion estimation increases the computational overhead in the
resource-constrained mobile devices. This makes the real-
time processing impractical in the mobile devices. Hence, to
achieve a tradeoff between performance and computation
overhead, only rotation estimation is considered for the
state-of-the-art solutions. Second, according to our empirical
studies, when the target is at a distance greater than 100cm,
the rotation usually brings greater pixel jitters than the
translation, hence, most previous work consider the rotation
has a greater impact on performance than the translation.
However, when the target is within a close range, e.g.,
at the distance less than 100cm, the translation usually
brings greater pixel jitters than the rotation, thus the trans-
lation tracking is also very essential for real applications
of camera shooting. Therefore, to efficiently perform video
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Fig. 1. Video Stabilization in Mobile Devices. Videos captured with mo-
bile devices often suffer from undesired frame jitters due to the sudden
movement from the users. We first estimate the original camera path
(red) via inertial-visual state tracking, then smooth the original camera
path to obtain the smoothed camera path (blue), and finally obtain the
stabilized frames by warping the original frames.

stabilization in mobile devices, it is essential to fuse the CV-
based and IMU-based approaches to accurately estimate the
camera’s 3D motion, including the rotation and translation.

In this paper, we propose a video stabilization scheme
for camera shoot in mobile devices, based on the visual and
inertial state tracking. Our approach is able to accurately
estimate the camera’s 3D motion by sufficiently fusing both
the CV-based and IMU-based methods. Specifically, during
the process of video shoot, we use the gyroscope to es-
timate the rotation of camera, and use the structure-from-
motion among the image frames to estimate the translation
of the camera. Different from the pure CV-based approaches,
which estimate the rotation and translation simultaneously
according to the camera projection model, our solution first
estimates the rotation based on the gyroscope measurement,
and plugs the estimated rotation into the camera projection
model, then we estimate the translation according to the
camera projection model. In comparison to the CV-based
solution, our solution can estimate the translation in a more
accurate manner with less number of feature point pairs,
since the number of undetermined degrees of freedom in
the 3D motion directly reduces from 6 to 3. After that, we
further smooth the camera’s motion to remove the unde-
sired jitters during the moving process. As shown in Fig.1,
according to the mapping relationship between the original
moving path and the smoothed moving path, we warp
each pixel from the original frame into a corresponding
pixel in the stabilized frame. In this way, the stabilized
video appears to have been captured along the smoothed
moving path of the camera. In the context of recent visual-
inertial based video stabilization methods [12], [13], our
solution is able to estimate the translation and rotation in a
more accurate manner, and meets the real time requirement
for online processing, by directly reducing the number of
undetermined degrees of freedom from 6 to 3 for CV-based
processing.

There are two key challenges to address in this paper.
The first challenge is to accurately estimate and effectively smooth
the camera’s 3D motion in the situation of fast movement and
violent jitters, due to the sudden movement during the video shoot.
To address this challenge, firstly, we use the gyroscope to
perform the rotation estimation to figure out a 3×3 rotation
matrix, since it can accurately estimate the rotation even if
the fast movement and violent jitters occur. Then, to smooth
the rotation, instead of smoothing the 9 dependent parame-
ters separately, we further transform the 3×3 rotation matrix
into the 1×3 Euler angles, and apply the low pass filter over

the 3 independent Euler angles separately. In this way, we
are able to effectively smooth the rotation while maintaining
the consistency among multiple parameters. Secondly, we
build a camera projection model by considering the rotation
and translation of the camera. Then, by substituting the esti-
mated rotation into the camera projection model, we directly
estimate the translation according to the matched feature
point pairs in adjacent image frames. For the situation of
fast movement and violent jitters, it is usually difficult to
find enough feature point pairs between adjacent image
frames to estimate the camera’s 3D motion. In comparison to
the traditional CV-based approaches, our solution requires
less number of feature point pairs, as we directly reduce
the number of undetermined degrees of freedom in the 3D
motion from 6 to 3. The second challenge is to sufficiently reduce
the computation overhead of video stabilization, so as to make the
real-time processing practical in the resource-constrained mobile
devices. For traditional CV-based approaches, they usually
require at least 5∼8 pairs of feature points to estimate the
rotation and translation. They involve 6 degrees of freedom,
thus they usually incur large computation overhead, failing
to perform the video stabilization in a real-time manner.
To address this challenge, our solution reduces the com-
putation overhead by directly reducing the undetermined
degrees of freedom from 6 to 3. Specifically, we use the
inertial measurements to estimate the rotation. Our solution
only requires at least 3 pairs of feature points to estimate the
translation, which reduces over 50% of the burden in the
CV-based processing. This makes the real-time processing
possible in the mobile devices.

We make three key contributions in this paper. 1) We
investigate video stabilization for camera shoot in mobile
devices. By fusing the IMU-based method and the CV-based
method, our solution is robust to the fast movement and vi-
olent jitters, and greatly reduces the computation overhead
in video stabilization. 2) We conduct empirical studies to
investigate the impact of movement jitters, and the measure-
ment errors in IMU-based approaches. We build a camera
projection model by considering the rotation and translation
of the camera. We further build the camera motion model to
depict the relationship between the inertial-visual state and
the camera’s 3D motion. 3) We implemented a prototype
system on smart glasses and smart phones, and evaluated
the performance under real scenarios, i.e., the human sub-
jects used mobile devices to shoot videos while they were
walking, climbing or riding. The experiment results show
that our solution achieves 32% better performance than the
state-of-art solutions in regard to video stabilization. More-
over, the average processing time latency is 32.6ms, which
is lower than the conventional inter-frame time interval, i.e.,
33ms, and thus meets the real-time requirement for online
processing.

2 RELATED WORK

CV-based Solution: Traditional CV-based solutions for
video stabilization can be roughly divided into 2D stabiliza-
tion and 3D stabilization. 2D video stabilization solutions
use a series of 2D transformations between adjacent frames
to represent the camera motion, and smooth these transfor-
mations to stabilize the video [1], [2], [14]. However, these
methods cannot figure out the camera’s 3D motion, thus
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they usually fail to compute the changes of projection for
the target scene when there exist significant depth changes.
Recent 3D video stabilization solutions [3], [4], [15] all seek
to stabilize the videos based on the 3D camera motion
model. They use the structure-from-motion among the im-
age frames to estimate the 3D camera motion, thus they can
deal with parallax distortions caused by depth variations.
Hence, they are usually more effective and robust in video
stabilization, at the cost of large computation overhead.
Therefore, they are usually performed in an offline manner
for video stabilization. Moreover, when the camera moves
fast or experiences violent jitters, they may not find enough
amount of feature points to estimate the motion.

IMU-based Solution: For mobile devices, since the built-
in gyroscopes and accelerometers can be directly used to es-
timate the camera’s motion, the IMU-based solutions [8], [9],
[16], [17] are proposed for video stabilization recently. For
video stabilization, Karpenko et al. calculate the camera’s
rotation by integrating the gyroscope readings directly [8],
whereas Hanning et al. take into account the noise of the gy-
roscope readings, they estimate the camera’s rotation with
an extended Kalman filter to fuse the readings of gyroscope
and accelerometer [9]. These IMU-based solutions are much
faster than the CV-based solutions, but they only consider
the rotation in modeling the camera motion without the
translation, since the gyroscope can accurately track the
rotation, whereas the accelerometer usually fail to accurately
track the translation due to large cumulative tracking errors.

Hybrid Solution: Recent work seek to fuse the inertial
and visual-based methods to track the camera’s motion
[18], [19], [20]. Yang et al. fuse the visual and inertial mea-
surements to track the camera state for augmented reality
[19]. In video stabilization, Jia et al. propose an EKF-based
method to estimate the 3D camera rotation by using both the
video and inertial measurements [20]. Still, they only use
the pure rotation to depict the camera motion and ignore
the camera’s translation. In this paper, we investigate video
stabilization in mobile devices, by accurately estimating and
smoothing the camera’s 3D motion, i.e., camera rotation
and translation. By fusing the IMU-based method and the
CV-based method, our solution is robust to the fast move-
ment and violent jitters, moreover, it greatly reduces the
computation overhead in video stabilization. In the context
of recent visual-inertial based video stabilization methods
[12], [13], our solution is able to estimate the translation and
rotation in a more accurate manner, and meets the real time
requirement for online processing, by directly reducing the
number of undetermined degrees of freedom from 6 to 3 for
CV-based processing.

3 PRELIMINARY

To illustrate the principle of camera shoot in the mobile
devices, we can use the pinhole camera model [11] to depict the
camera projection. As illustrated in Fig. 2, for an arbitrary
point P from the specified object in the scene, a ray from this
3D point P to the camera optical center Oc intersects the
image plane at a point P′. Then, the relationship between
the point P = [X,Y, Z]T in the 3D camera coordinate and

its image projection pixel P′ = [u, v]T in the 2D image plane
can be represented as:

Z

uv
1

 =

αf 0 cx
0 βf cy
0 0 1

XY
Z

 = KP, (1)

where K is the camera intrinsic matrix [11], which contains
the camera’s intrinsic parameters [cx, cy]T , α, β and f . Here,
[cx, cy]

T is the pixel coordinate of the principal point C
in the image plane. f is the camera focal length, which is
represented in physical measurements, i.e., meters, and is
equal to the distance from the camera center Oc to the image
plane, i.e., OcC. Considering that the projected points in
the image plane are described in pixels, while 3D points in
the camera coordinate system are represented in physical
measurements, i.e., meters, we introduce the parameters α
and β to correlate the same points in different coordinate
systems using different units. Thus the parameters α and
β are the number of pixels per meter(i.e., unit distance
in physical measurements) along xi-axis and yi-axis, as
shown in Fig.2. Note that α and β may be different because
the aspect ratio of the unit pixel is not guaranteed to be
one. We can obtain these camera’s intrinsic parameters in
advance from prior calibration [21]. Then, the coordinate of
the projection P′ in the 2D image plane, i.e., [u, v]T , can be
computed according to Eq.(1).
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Fig. 2. Pinhole camera model.

4 EMPIRICAL STUDY

During the camera shoot, it is known that the camera is
usually experiencing back-and-forth movement jitters of
fairly high frequency, fast speed and small rotations and
translations. In this section, we perform empirical studies
on the real-world testbed in regard to the movement jitters
and measurement errors, so as to investigate the following
issues: 1) In what level do the movement jitters in the
3D space affect the pixel jitters in the image plane of the
camera? 2) What are the average measurement errors in
measuring the rotation and translation of the camera with
the inertial sensors?

Without loss of generality, we use the smart phone
Lenovo PHAB2 Pro as the testing platform. This platform
has a 16-megapixel camera, we use it to capture the 1080p
videos at 30 frames per second. Moreover, this platform has
an inertial measurement unit (BOSCH BMI160) consisting
of a 3-axis accelerometer and a 3-axis gyroscope, we use
them to capture the linear acceleration and the angular rate
of the body frame at a frequency of 200Hz, respectively. To
capture the ground-truth of the 3D motion for the mobile
device, including the rotation and translation, we use the
OptiTrack system [22] to collect the experiment data.
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(a) The jitter of pixels due to
rotation-based jitter, δθ = 10◦
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(b) The jitter of pixels due to
translation-based jitter, δt = 5cm
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Fig. 3. The experiment results of the empirical study.

4.1 Observations

Observation 1. When the camera is subject to the same rotation-
based jitters, the stationary target points with closer distance
to the image plane are suffering from stronger pixel jitters in
the image plane. To evaluate how the rotation-based jitters
affect the pixel jitters in the image plane, we deployed the
stationary target points in a line parallel to the optical axis
of camera and with different distances to the image plane.
Without loss of generality, we performed the rotation-based
jitters around the y-axis of the camera coordinate system,
which leads to the coordinate change of the projection in
x-axis. The maximum rotation angle δθ is set to 10 degrees
by default. Then, we measured the pixel jitter for the target
points with different depths, i.e., coordinate difference in
pixels between the projections before and after the rotation-
based jitter. As shown in Fig.3(a), we use the pinhole camera
model to predict the pixel jitter of an object at a given
distance, and plot it as the curve shown in green color, then
we plot the corresponding experiment results for pixel jitter
of an object at a given distance. The comparison between
the theoretical results and the experiment results shows that
the observations from the experiments are consistent with
the theoretical hypothesis from the pinhole camera model.
According to the experiment results, we found that as the
depth of the target point increases from 10cm to 50cm, the
pixel jitter decreases rapidly from 314 pixels to 235 pixels.
Then, as the depth further increases from 50cm to 150cm,
the pixel jitter decreases very slowly from 235 pixels to 230
pixels.

Observation 2. When the camera is subject to the same
translation-based jitters, the stationary target points with closer
distance to the image plane are suffering from stronger pixel
jitters in the image plane. To evaluate how the translation-
based jitters affect the pixel jitters in the image plane of the
camera, we deployed the target points in the optical axis of
the camera and with different distances to the image plane.
Without loss of generality, we performed the translation-
based jitters along the x-axis of the camera coordinate
system, the maximum displacement δt is set to 5cm by
default. Then, we also measured the pixel jitter for the target
points with different depths. As shown in Fig.3(b), we use
the pinhole camera model to predict the pixel jitter of an
object at a given distance, and plot it as the curve shown
in green color, then we plot the corresponding experiment
results for pixel jitter of an object at a given distance. We
found that as the depth of the target point increases from
10cm to 50cm, the pixel jitter decreases rapidly from 650
pixels to 130 pixels. Then, as the depth further increases
from 50cm to 150cm, the pixel jitter decreases very slowly

from 130 pixels to 43 pixels.
Observation 3. When the mobile device is rotating, the gyro-

scope is able to accurately measure the rotation in low, medium
and high speed mode. To evaluate the average measurement
errors in measuring the rotation with the gyroscope, without
loss of generality, we rotated the mobile device around the
z-axis of the local coordinate system with the angle of 45◦,
90◦ and 180◦, respectively. Besides, for each rotation angle,
we evaluate the measurement errors with the low speed
(10◦/s), medium speed (40◦/s) and high speed (100◦/s)
mode, respectively. Specifically, the measurement errors are
calculated by comparing the gyroscope measurement with
the ground truth. According to the experiment results in
Fig.3(c), we found that, as the rotation angle increases from
45◦ to 180◦, the measurement error is slightly increasing,
which is always less than 2◦ in all cases.

Observation 4. When the mobile device is moving back and
forth, the accelerometer usually fails to accurately measure the
translation in low, medium and high speed mode. To evaluate
the average measurement errors in measuring the trans-
lation with the accelerometer, without loss of generality,
we move the mobile device back and forth in the range
of [-5cm, +5cm] along the z-axis of the local coordinate
system, by varying the overall distance from 10∼15cm to
40∼45cm, respectively. Besides, for each moving distance,
we evaluate the measurement errors with the low speed
(3cm/s), medium speed (30cm/s) and high speed (100cm/s)
mode, respectively. Specifically, the measurement errors are
calculated by comparing the accelerometer measurement
with the ground truth. As shown in Fig.3(d), we found
that, for all three speed modes, as the moving distance
increases from 10∼15cm to 40∼45cm, the corresponding
measurement errors are linearly increasing. Nevertheless,
the measurement errors of all speed modes with all moving
distances are all greater than 10cm. Since the actual trans-
lation ranges in [-5cm, +5cm], and the maximum moving
distance is less than 45cm, thus the average measurement
error (whether displacement error or distance error) greater
than 10cm is not acceptable at all.

4.2 Summary

Both the rotation-based jitters and the translation-based
jitters cause non-negligible pixel jitters in the image plane
during video shoot. With the inertial measurement units,
usually the rotation can be accurately measured by the
gyroscope, whereas the translation fails to be accurately
measured by the accelerometer. Therefore, it is essential
to estimate the translation in an accurate and lightweight
manner, such that the video stabilization can be effectively
performed.
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5 PROBLEM FORMULATION AND MODELING

5.1 Problem Formulation
According to the observations in the empirical study, in
order to achieve video stabilization, we need to accurately
track the rotation and translation during the video shot,
so as to effectively remove the jitters from the rotation
and translation. Meanwhile, we need to perform the rota-
tion/translation estimation in a lightweight manner, so as to
make the computation overhead suitable for real-time processing.
Therefore, based on the above understanding, it is essential
to statistically minimize the expectation of both rotation
estimation error and translation estimation error during the
process of video shot. Meanwhile, we need to effectively
limit the expected computation overhead within a certain
threshold, say τ . Specifically, let the rotation estimation error
and translation estimation error be δr and δt, respectively,
and let the computation overhead for rotation estimation
and translation estimation be cr and ct, respectively. We
use the function exp() to denote the expectation. Then, the
objective of our solution is to

min exp(δr) + exp(δt), (2)
subject to:

exp(cr) + exp(ct) ≤ τ.

To achieve the above objective, we first analyze the pros
and cons for the IMU-based and CV-based approaches, as
shown in Table 1. To track the translation, considering that
only the CV-based approach is able to track the translation
with high accuracy, we thus use the CV-based approach to
estimate the translation. Moreover, to track the rotation, on
one hand, both the IMU-based and CV-based approaches
are able to track the rotation with high accuracy, on the other
hand, the compute complexity of the CV-based approach is
relatively high, especially when the 6 degrees of freedom
(DoF) are undetermined. Hence, we use the IMU-based
approach to estimate the rotation, due to its low compute
complexity. In this way, the compute overhead of the CV-
based approach is greatly reduced, since the undetermined
DoF for CV-based processing is greatly reduced from 6 to 3.

Rotation Translation Compute
Tracking Tracking Complexity

IMU-based High Accuracy Low Accuracy Low
(3 DoF) (3 DoF)

CV-based High Accuracy High Accuracy High
(3 DoF) (3 DoF)

TABLE 1
Pros and cons of IMU and CV-based approaches for video stabilization.

Therefore, after formulating the video stabilization prob-
lem in an expectation-minimization framework, we can
decompose and solve this complex optimization problem
by breaking it down into two subproblems, i.e., using the
IMU-based approach to estimate the rotation and using the
CV-based approach to estimate the translation.

5.2 Camera Projection Model
According to the pinhole camera model, for any arbitrary
3D point P from the stationary object in the scene, the
corresponding 2D projection P′ in the image plane always
keeps unchanged. However, when the body frame of the

camera is dynamically moving in the 3D space, the camera
coordinate system as well as the image plane is also contin-
uously moving, which involves rotation and translation. In
this way, even if the point P keeps still in the 3D space, the
corresponding projection P′ is dynamically changing in the
2D plane, thus further leading to video shaking in the image
plane.

As any 3D motion can be decomposed into the combi-
nation of rotation and translation, we can use the rotation
matrix Rt0,t and a vector Tt0,t to represent the rotation and
translation of the camera coordinate system, respectively,
from the time t0 to the time t. Then, for a target point Pi in
the camera coordinate system, if its coordinate at time t0 is
denoted as Pi,t0 , then, after the rotation and translation of
the camera coordinate system, its coordinate Pi,t at time t
can be computed by

Pi,t = Rt0,tPi,t0 + Tt0,t. (3)

Therefore, according to Eq. (1), for the point Pi,t at time t,
the corresponding projection in the image plane, i.e., P′i,t =
[ui,t, vi,t]

T , can be computed by

Zi,t · [ui,t, vi,t, 1]T = KPi,t = K(Rt0,tPi,t0 + Tt0,t), (4)

where Zi,t is the coordinate of Pi,t in the z−axis of the
camera coordinate at time t, K is the camera intrinsic matrix.

5.3 Camera Motion Model
5.3.1 Coordinate Transformation
As the mobile devices are usually equipped with Inertial
Measurement Units (IMU), thus the motion of the camera
can be measured by IMU, in the local coordinate system of
the body frame, as shown in Fig. 4. As aforementioned in
Section 5.2, the camera projection is measured in the camera
coordinate system, once we figure out the camera’s motion
from the inertial measurements in the local coordinate system,
it is essential to transform the camera’s motion into the
camera coordinate system.

Camera coordinate 
system

Local coordinate 
system

P

P′�

M

x
y

z

OL

OC x
y

z

Fig. 4. The local coordinate system and the camera coordinate system
of the rear camera.

For the embedded camera of the mobile device, we take
the mostly used rear camera as an example. As shown in
Fig. 4, we show the camera coordinate system and the local
coordinate system, respectively. According to the relationship
between camera coordinate system and the local coordinate sys-

tem, we can use a 3×3 rotation matrix M =

 0 −1 0
−1 0 0
0 0 −1


to denote the coordinate transformation between the two
coordinate systems. For any other camera, we can also use
a similar rotation matrix M′ to denote the corresponding
coordinate transformation.
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5.3.2 Rotation Estimation
According to Eq. (4), it is essential to accurately estimate
the rotation matrix Rt0,t and the translation vector Tt0,t,
such that the projection of Pi at time t in the image plane,
i.e., P′i,t = [ui,t, vi,t]

T , can be figured out. To estimate the
camera’s rotation Rt0,t from the time t0 to time t, we first
use the gyroscope to measure the angular speed in each axis
of the local coordinate system. Then, according to the small
angle approximation [23], we can compute the rotation
matrix At,t+δt relating the local coordinate at time t to the
one at time t + δt. After obtaining At,t+δt, we can further
update the rotation matrix R’t0,t for the local coordinate
system as follows:

R’t0,t+δt = At,t+δtR’t0,t. (5)

Hence, considering the coordinate transformation between
the local coordinate system and the camera coordinate sys-
tem, we further compute the camera’s rotation in camera
coordinate system as follows:

Rt0,t = MR’t0,tM
−1. (6)

5.3.3 Translation Estimation
Considering the nonnegligible error accumulation of using
linear acceleration to calculate the translation, we introduce
the computer vision (CV)-based method, which utilizes the
feature point pairs to estimate the motion between two
frames. However, different from traditional CV-based meth-
ods which calculate both rotation and translation in each
axis, i.e., 6 degrees of freedom (DOF), we have calculated
rotation from gyroscope and only need to calculate the
unknown translation, i.e., 3 DOFs. Therefore, we reduce the
DOFs in the 3d motion from 6 to 3. Specifically, we first
detect the feature point pairs to estimate the 3D motion of
camera. After that, we subtract the rotation measured by
IMU from the estimated 3D motion to obtain the translation.
However, due to the continuous change of camera coor-
dinate system and the non-unified unit for the estimated
translation, we introduce the initialization to define the
unified translation unit and represent the fixed 3D points
in the unified unit to estimate the following translation in a
unified unit.

Feature Point Extraction. According to each image frame
of the video, we first utilize the FAST (Features from Accel-
erated Segment Test) keypoint detector to detect the feature
point, and then calculate the binary BRIEF (Binary Robust
Independent Elementary Features) descriptor [24] of the
feature point. Both the feature point and the descriptor form
an ORB feature [25]. Specifically, for the feature point P′i,t0
in the image frame It0 and the feature point P′j,t1 in image
frame It1 , we use Di and Dj to represent their descriptors,
respectively. Then, the similarity between P′i,t0 and P′j,t1 can
be measured by the hamming distance [26] between their
descriptors Di and Dj . Given P′i,t0 , we choose the feature
point with the nearest hamming distance in the image It1
to be the matching feature point for P′i,t0 , and they form a
feature point pair. The coordinate difference between the
feature point pair can be used to estimate the camera’s
motion.

Initialization for Translation Unit. As shown in Fig. 5,
for each feature point pair (P′i,t0 ,P

′
i,t1), given the projection

Ot0 Ot1Rt0,t1,Tt0,t1

It0 It1

P′�
i,t0

P′�
i,t1

O′�
t0

Pi1
Pi2
Pi3

Pi

O′�
t1

Fig. 5. Epipolar geometry.

point P′i,t0 and the camera optical center Ot0 , the target 3D
point Pi must locate in the ray Ot0P′i,t0 . Similarly, the target
point Pi should also locate in the ray Ot1P′i,t1 . Thus Pi is
the intersection point of Ot0P′i,t0 and Ot1P′i,t1 . In computer
vision, this is referred to the epipolar constraint [11]. Then,
we can use the fundamental matrix Ft0,t1 [11] to describe
the epipolar constraint, i.e.,

P′i,t1
TFt0,t1P′i,t0 = 0. (7)

Here, the fundamental matrix Ft0,t1 can be generated by the
relative rotation Rt0,t1 and translation Tt0,t1 from the image
It0 to image It1 , i.e.,

Ft0,t1 = K−T [Tt0,t1 ]×Rt0,t1K−1, (8)
where K is the camera intrinsic matrix, [Tt0,t1 ]× is a 3 × 3
matrix. Specifically, let Tt0,t1 = [T xt0,t1 , T

y
t0,t1 , T

z
t0,t1 ]

T , then

[Tt0,t1 ]× =

 0 −T zt0,t1 T yt0,t1
T zt0,t1 0 −T xt0,t1
−T yt0,t1 T xt0,t1 0

. Therefore, by sub-

stituting Eq. (8) to Eq. (7), we have

(P′i,t1
TK−T )[Tt0,t1 ]×(Rt0,t1K−1P′i,t0) = 0. (9)

Here, the rotation matrix Rt0,t1 can be estimated from the
gyroscope measurements. Then, the only unknown factor
in Eq. (9) is [Tt0,t1 ]×, which has three unknown parameters
T xt0,t1 , T yt0,t1 , T zt0,t1 . Therefore, as long as we can obtain more
than three pairs of matching feature points, we can solve
[Tt0,t1 ]× based on the Least Square Error (LSE) method.

However, there could be multiple solutions for [Tt0,t1 ]×,
as we can multiply a nonzero coefficient on both sides of
Eq. (9), whose right side is 0. For convenience, we figure
out one of the solutions for T xt0,t1 , T yt0,t1 , and T zt0,t1 in camera
coordinate system, based on Eq.(9). It is noteworthy that the
calculated translation Tt0,t1 from Eq. (9) is represented in
a relative manner, instead of in a absolute unit. Therefore,
there is a scale factor α between the calculated translation
and the actual translation T∗t0,t1 in the absolute unit, as
shown in Eq. (10), where T x∗t0,t1 , T y∗t0,t1 and T z∗t0,t1 mean the
actual translation along x-axis, y-axis, z-axis.

T xt0,t1 = T x∗t0,t1 · α, T
y
t0,t1 = T y∗t0,t1 · α, T

z
t0,t1 = T z∗t0,t1 · α. (10)

However, it is actually difficult to transform the calculated
translation Tt0,t1 in the absolute unit, since the values of α,
T x∗t0,t1 , T y∗t0,t1 , and T z∗t0,t1 are all unknown. To tackle the above
issue, we define

|Tt0,t1 | =
√
(T xt0,t1)

2 + (T yt0,t1)
2 + (T zt0,t1)

2 (11)

as the translation unit. In the following frames, when we
calculate a new translation, we represent it in the above
translation unit. Consequently, we can represent the calcu-
lated translation over all frames with a unified unit.
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Compute Coordinates of Fixed 3D Points in Unified
Unit. According to Eq. (4), representing the translation Tt0,t
in the unified unit also means representing the coordinate
of 3D point Pi,t in the unified unit. Since the 3D points are
stationary, we can use the coordinate of 3D point Pi,t0 at
time t0 to represent the coordinate of Pi at any time. In
regard to the coordinate of any fixed 3D point at time t0,
according to Eq. (4), we can use the rotation Rt0,t1 and
the translation Tt0,t1 from t0 to t1 to calculate it in the
unified unit, since Tt0,t1 is a unified unit. Specifically, for an
arbitrary target point Pi, suppose the 3D coordinates of Pi in
the camera coordinate system are Pi,t0 = [Xi,t0 , Yi,t0 , Zi,t0 ]
and Pi,t1 = [Xi,t1 , Yi,t1 , Zi,t1 ], respectively, at the time t0
and t1. Then, the corresponding 2D projections in the image
plane are P′i,t0 and P′i,t1 , respectively. Hence, based on the
camera projection model in Eq.(4), we have{

Zi,t0P′i,t0 = KPi,t0 ⇒ Zi,t0K−1P′i,t0 = Pi,t0 ,
Zi,t1P′i,t1 = KPi,t1 ⇒ Zi,t1K−1P′i,t1 = Pi,t1 .

(12)

After we calculate the rotation Rt0,t1 and translation
Tt0,t1 for the camera coordinate system between the two
time points t0 and t1, we have Pi,t1 = Rt0,t1Pi,t0 + Tt0,t1 ,
based on Eq. (3). Thus according to Eq.(12), we further have

Pi,t1 = Zi,t0Rt0,t1K−1P′i,t0 + Tt0,t1 . (13)

If we let Xi,t0 = K−1P′i,t0 and Xi,t1 = K−1P′i,t1 , then,
according to Eq.(12) and Eq.(13), we have

Pi,t1 = Zi,t1Xi,t1 = Zi,t0Rt0,t1Xi,t0 + Tt0,t1 . (14)

Thus, to compute the coordinate of Pi,t1 , we only need to
solve Zi,t0 or Zi,t1 . By multiplying both sides of Eq.(14)
with the vector Xi,t1 , we can eliminate the unknown param-
eter Zi,t1 and then calculate the unknown parameter Zi,t0 .
Specifically, the left side of Eq.(14), i.e., Zi,t1(Xi,t1 × Xi,t1)
should be equal to 0, since the cross product of any vector
itself should be equal to 0, then the right side is

Zi,t0(Rt0,t1Xi,t0)× Xi,t1 + (Tt0,t1)× Xi,t1 = 0. (15)

According to Eq. (15), we are able to solve Zi,t0 . Then, based
on Eq. (14), we can further calculate Pi,t1 . Similarly, we can
also calculate Pi,t0 as well as the 3D coordinates of other
target points.

Translation Estimation in Unified Unit. According to
the projection model in Eq. (4), at any time t during the
camera shoot, we can depict the relationship between the
3D point and its corresponding projection in the image
plane. Here, K is a known parameter, as aforementioned, the
rotation Rt0,t can be calculated with the gyroscope-based
method, and the 3D coordinates of Pi,t0 can be calculated
with the CV-based method. Thus, the only unknown pa-
rameters are Tt0,t = [T xt0,t, T

y
t0,t, T

z
t0,t] and Zi,t. To solve the

above four parameters, we need at least two pairs of feature
points to set up four equations. We can use the Least Square
Error (LSE) method to solve the overdetermined equation
system. After that, we are able to depict the translation with
the unified translation unit. Specifically, let u = |Tt0,t1 |, then
we can denote T xt0,t = γx · u, T yt0,t = γy · u, T zt0,t = γz · u. In
this way, we can estimate the translation of the camera with
the unified unit.
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Fig. 6. System Framework

6 SYSTEM DESIGN

6.1 System Overview
The system architecture is shown in Fig.6. We take as input
frames from original video and sensor readings from motion
sensor. We first perform Preprocessing to estimate the 3D
rotation of the camera based on the solution aforemen-
tioned in Section 5.3.2, and extract features for video frames.
The estimated rotation and the video frames with feature
points will be served for two tasks, Camera Calibration and
Video Stabilization. The Camera Calibration performs feature
tracking between consecutive video frames to obtain feature
point pairs, and then uses feature point pairs to calculate
camera intrinsic parameters. The Video Stabilization per-
forms video stabilization in three major steps. First, the
3D translation of the camera is estimated based on the
solution aforementioned in Section 5.3.3. Second, the 3D
motion of the camera is sufficiently smoothed to remove
the undesired jitters, thus a smoothed moving path of the
camera is generated. Finally, given a smoothed moving path
of the camera in the 3D space, the stabilized video is created
by the frame warping, i.e., warping each pixel in the original
frame to the corresponding stabilized frame, according to
the mapping relationship between the original moving path
and the smoothed moving path. After that, each frame of the
stabilized video appears to be captured along the smoothed
moving path.

6.2 Camera Calibration
According to the pinhole camera model aforementioned in
Section 3, in order to depict the camera projection, we need
to know the camera’s intrinsic parameters, i.e., [cx, cy]T , α, β
and f . Here, [cx, cy]T is the pixel coordinate of the principal
point in the image plane. Without loss of generality, if we
set the image size to (w, h) in pixels, then [cx, cy]

T is ideally
equal to [w2 ,

h
2 ]
T . However, due to the sensor manufacturing

errors, the principal point, which is the intersection point of
the optical axis and the image plane, will be slightly offest
from the center of the image, i.e., [cx, cy]T will not be equal
to [w2 ,

h
2 ]
T and needs us to estimate. f is the camera focal

length, which is represented in physical measurements, i.e.,
meters. α and β are the number of pixels per unit distance
in physical measurements (i.e. meter) along the xi-axis and
yi-axis of the image plane, and they are used to correlate the
image plane using pixels and the camera coordinate system
using meters. If given an arbitrary camera, we may not have
access to these parameters. However, we can access to the
images the camera takes. Thus we can find a way to deduce
these parameters from images, which is referred as camera
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calibration. There are many different approaches to calculate
the intrinsic parameters for a camera, which can be divided
into two main categories, i.e., traditional camera calibration
which uses reference objects with known geometry (e.g.
spin table and checkerboard) [21], and automatic-calibration
which does not use any known pattern [27]. Taking into
account the convenience of operations for everyday use, we
propose motion-assisted calibration to calculate the intrinsic
parameters of camera, by performing a structured move-
ment.

We design a simple camera calibration process, i.e., the
user only needs to use the camera to shoot a video for
5∼10 seconds. In the process of shooting video, the user
keeps the camera’s position unchanged, and just changes
the camera’s orientation by rotation. Then we perform fea-
ture tracking between consecutive frames to obtain feature
point pairs, and use these feature point pairs to calculate the
camera intrinsic parameters. Specifically, during the camera
calibration, the motion of camera only involves rotation. For
a target 3D point Pi, if its coordinate at time t0 is denoted
as Pi,t0 , then at time t, after the camera rotation Rt0,t from
time t0 to time t, its corresponding projection in the image
plane, i.e., P′i,t, can be computed by

P′i,t = KRt0,tPi,t0 , (16)

where K is the camera intrinsic matrix, which contains the
camera’s intrinsic parameters. In order to calculate K, we

Oc

Rtj,tj+1

Pi

P′�
i,tj

P′�
i,tj+1

Itj

Itj+1

P′�
i,tj

Fig. 7. The pure rotation motion model

use feature point pairs of consecutive frames. As shown
in Fig.7, for each feature point pair (P′i,tj ,P

′
i,tj+1

) in the
consecutive frames (Itj , Itj+1

), we have P′i,tj = KRt0,tj Pi,t0
and P′i,tj+1

= KRt0,tj+1
Pi,t0 , based on Eq.(16). Thus the

mapping relationship from feature point P′i,tj to feature
point P′i,tj+1

can be represented as:

P′i,tj+1
= KRt0,tj+1

R−1t0,tj K−1P′i,tj , (17)

where the coordinates of the feature point pair (P′i,tj ,P
′
i,tj+1

)
can be obtained by feature tracking, the rotation Rt0,tj
and Rt0,tj+1 can be obtained by rotation estimation afore-
mentioned in Section 5.3.2. Then, the only unknown factor
in Eq.(17) is K, which has five unknown parameters, i.e.,
[cx, cy]

T , α, β and f . To solve the above five parameters, we
formulate camera calibration as an optimization problem,
where we want to minimize the reprojection error of all
feature point pairs:

K∗ = argmin
K

N−1∑
j=1

Nj∑
i=1

‖P′i,tj+1
−KRt0,tj+1

R−1t0,tj K−1P′i,tj‖
2,

(18)

where N is the number of frames, Nj is the number of fea-
ture point pairs of j−th consecutive frame. By solving this
optimization problem based on the Least Square Error(LSE)
method, we can calculate the camera intrinsic parameters.
Note that the camera calibration only needs to be done once
for each camera.

6.3 Video Stabilization
6.3.1 Camera Translation Estimation
According to the method aforementioned in Section 5.3.3,
we can estimate the camera’s 3D translation {Tt0,t}, from
the time t0 to the time t. In particular, during the procedure
of the translation estimation, we use the pairs of feature
points as reference points. We expect the 3D target point of
feature points to be stationary in regard to the earth coordi-
nate system, such that the camera motion and frame warp-
ing can be accurately performed based on the coordinate
variation of feature points. However, in real applications,
these 3D target points can be dynamically moving instead
of keeping stationary. For example, the feature points can
be extracted from the moving human subjects in the scene.
These feature points should be regarded as outliers. There-
fore, we use the Random Sample Consensus (RANSAC)
algorithm [28] to detect the outliers. Specifically, at any
time t, we calculate the translation Tt0,t through multiple
iterations. In each iteration, e.g., the kth iteration, we first
select two pairs of matching points randomly to calculate
the translation Tkt0,t. Then, we use the translation Tkt0,t to
calculate the reprojection error Ei,k for each matching point
pair (Pi,t0 ,P

′
i,t), as shown in Eq. (19).

Ei,k = ‖P′i,t −K(Rt0,tPi,t0 + Tkt0,t)‖
2
. (19)

If the average reprojection error of all matching pairs at
the kth iteration is below a certain threshold, we add the
calculated Tkt0,t to the candidate translations. In addition,
the matching point pairs whose reprojection errors are be-
low the certain threshold are classified as inliers. While the
matching point pairs whose reprojection errors are above
the certain threshold are classified as outliers. If we have
enough inliers or the iteration is repeated a fixed number of
times, the iteration stops. Finally, we choose the candidate
translation with minimal rejection error as the translation at
the time t.

In addition, due to the motion of camera, some 3D points
will move out of view and cannot be used to estimate
the following translation. Therefore, when the number of
available 3D points is less than a threshold, we will detect
new 3D points based on the feature point pairs of frames at
time t− 1 and time t, as mentioned before.

6.3.2 Camera Motion Smoothing
Due to the sudden movement of the mobile devices during
the camera shooting, there might exist a number of jitters
in regard to the measurements related to the rotation and
translation. Specifically, suppose that we set the time t0 as
the initial time, according to the method aforementioned
in Section 5.3, we can calculate the rotation matrix {Rt0,t}
and the translation vector {Tt0,t}, respectively, from the
time t0 to the time t. We set the sequence of {Rt0,t} and
{Tt0,t} as the original camera motion, as it represents the
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original moving path of the camera which involves the
unexpected jitters. Then, to smooth the unexpected jitters
from the original camera motion, which is usually existing in
high frequency band, we apply the low-pass filter on the
sequence of {Rt0,t} and {Tt0,t}, respectively, to obtain the
smoothed camera motion.

To smooth the unexpected jitters in the translation, it is
known that the translation vector {Tt0,t} has three degrees
of freedom, we can apply the low-pass filter on each of
the three dimensions directly. Without loss of generality, we
describe our solution in regard to the x-dimension of the
translation vector {Tt0,t}, i.e., {Txt0,t}. Specifically, we apply
a weighted moving average filter on the sequence of {Txt0,t}
using a sliding window. To calculate the smoothed trans-
lation, we provide different weights at different positions
of the sliding window. Here, we use a Gaussian function to
calculate the weights, so that for the time t, the weight given
to the close positions is higher than those distant positions.
Assume the length of the sliding window is n, then at the
time ti, the smoothed translation T̂

x

t0,ti can be

T̂
x

t0,ti =
n∑
j=1

wj∑n
j=1 wj

Txt0,ti−j+1
, (20)

where wj is the weight at the position j. In this way, we are
able to smooth the translation-based jitters of the camera.

To smooth the unexpected jitters in the rotation, it is
known that the 3×3 rotation matrix Rt0,t involves 9 param-
eters. As the camera coordinate system is rotating, we obtain
9 streams of these parameters over time. However, these pa-
rameters are not mutually independent to each other, since
the rotation usually has three degrees of freedom in the 3D
space. Therefore, in order to smooth the jitters in the rotation
measurement, we first transform the 3 × 3 rotation matrix
Rt0,t into the corresponding Euler angles [φt0,t, θt0,t, ψt0,t].

Specifically, suppose Rt0,t =

[
R11 R12 R13

R21 R22 R23

R31 R32 R33

]
, then, the

Euler angles (φt0,t, θt0,t, ψt0,t) can be calculated by
φt0,t = arctan(R32

R33
),

θt0,t = arctan( −R31√
R2

32+R
2
33

),

ψt0,t = arctan(R21

R11
).

(21)

Then we use the low pass filter such as the same weighted
moving average filter to smooth the jitters in the Euler
angles. After that, we further transform the smoothed Euler
angles to the rotation matrix R̂t0,t in a similar manner as
follows:

R̂t0,t = Rzt0,tR
y
t0,tR

x
t0,t. (22)

Here, Rxt0,t, Ryt0,t, Rzt0,t mean the rotation matrix transformed
from the Euler angles φt0,t, θt0,t, ψt0,t, respectively. They
also correspond to rotation around x-axis, y-axis, z-axis,
respectively. In this way, we are able to smooth the rotation-
based jitters of the camera.

Fig. 8 shows an example of the original moving path and
the smoothed moving path in a global coordinate system,
the moving path involves the rotation and translation of
the camera in the 3D space. It is found that the original
moving path is full of jitters, while the smoothed moving
path is fairly flat and smooth in the contour. The red arrows
show the mapping relationship between the positions in the
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Fig. 8. The original moving path vs smoothed moving path

original moving path and the positions in the smoothed
moving path.

6.3.3 Frame Warping for Video Stabilization
During a video shoot, if we do not introduce any stabiliza-
tion operation, each image frame generated from the camera
view is called original frame. However, if we introduce the
estimated camera motion to calibrate the original image
frame, we can replace the original frame with a new image
frame, which is called stabilized frame. At first, we transform
the pixels P′i,t corresponding to the feature points in the
original frame to the pixels P̂

′
i,t in the stabilized frame. For

the feature point P′i,t in the original frame, the coordinate
of its corresponding 3D point at time t0, i.e., Pi,t0 , can be
calculated based on the original camera motion. With the
known coordinate Pi,t0 at time t0, and the known smoothed
camera motion (R̂t0,t, T̂t0,t) at the time t by referring to the
status at the time t0, we can transform Pi,t0 to P̂i,t, then to
P̂
′
i,t, based on the camera projection model shown in Eq.

(23).

Ẑi,t · P̂
′
i,t = KP̂i,t = K(R̂t0,tPi,t0 + T̂t0,t). (23)

Here, P̂i,t is the coordinate of Pi in the smoothed camera
coordinate system at the time t, Ẑi,t is the coordinate of P̂i,t
in the z-axis, i.e., the depth value of the pixel P̂

′
i,t. Among the

parameters, Pi,t0 is obtained through initialization, R̂t,t0 and
T̂t,t0 are obtained through smoothed camera motion, while K
is a known parameter, thus we can calculate P̂i,t. After that,
we can obtain Ẑi,t, which is the coordinate of P̂i,t in z-axis.
That is to say, there is only one unknown parameter P̂

′
i,t,

which can be solved based on Eq. (23). In this way, we can
transform each feature point P′i,t in the original frame to the
3D point Pi,t0 , and then transform Pi,t0 to the corresponding
pixel P̂

′
i,t in the stabilized frame.

For the other pixels not belonging to feature points,
it is difficult to transform them into the corresponding
pixels in the stabilized frame, because of the unknown 3D
points corresponding to the pixels. At this time, we combine
the original frame and the projected feature points in the
stabilized frame to stabilize the video. That is to say, we in-
troduce a standard texture mapping algorithm according to
the warped mesh [15], which proposed content-preserving
warps to transform each pixel in the original frame to the
stabilized frame.

6.4 Multi-Thread Optimization for Video Stabilization

In order to implement real-time video stabilization, our sys-
tem needs to output the stabilized frame without noticeable
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Fig. 9. Time cost in different stages

latency. If the frame rate is 30fps, we want the time latency
to be lower than the waiting time between two frames,
i.e., 33ms. According to Section 6.1, in order to output a
stabilized video, we need to capture original frame, extract
and track features, estimate and smooth camera motion,
perform frame warping to obtain the stabilized frame, and
finally write the stabilized frame to the stabilized video.
The large time cost in image processing leads to large time
latency for video stabilization. To solve this problem, we
first profile the time cost of each stage in video stabilization,
and then introduce multi-thread optimization to reduce the
time cost.

6.4.1 Time Cost in Different Stages
There are five main stages in our video stabilization sys-
tem, i.e., capturing original frame, feature extraction and
tracking, camera motion estimation and smoothing, frame
warping, and writing the stabilized frame to the stabilized
video. The stages are respectively called ‘Stage1’, ‘Stage2’,
‘Stage3’, ‘Stage4’ and ‘Stage5’ for short. We first set the
image size to 1920 ∗ 1080 pixels, and then measure the time
cost of processing one original frame in each stage. Without
loss of generality, we use the smartphones Lenovo PHAB2
Pro, HUAWEI MATE20 Pro and SAMSUNG Galaxy Note8
as the testing platforms. We repeat the measurement for
500 times to get the average time cost. According to the
measurement shown in Fig. 9, without loss of generality, we
use the time cost with the Lenovo PHAB2 Pro by default,
and the time cost in five stages with the Lenovo PHAB2
Pro smartphone is 26.8, 48.1, 8.6, 9.2, 30.4 ms, respectively.
Thus the time cost of processing one original frame can
be calculated by Eq.(24). Obviously, 123.1 ms is very large
latency, thus more optimizations are expected for our video
stabilization system to realize real time processing.

T = (26.8 + 48.1 + 8.6 + 9.2 + 30.4)ms = 123.1ms. (24)

6.4.2 Multi-Thread Processing
As shown in Fig. 10(a), according to Eq.(24), if our system
works with a single thread, it takes 123.1 ms to process
one frame. Thus, we introduce multi-thread optimization to
reduce the time cost. We use three threads to capture frame,
process frame and write frame in parallel. As shown in Fig.
10(b), the Capture Frame thread captures frames from the
original video and writes the original frames to the buffer.
The Process Frame thread first reads the original frame from
the buffer, then performs feature extraction and tracking,
motion estimation and smoothing, frame warping to obtain
the stabilized frame, and finally writes the stabilized frame
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to the buffer. The Write Frmae thread reads the stabilized
frames from the buffer and writes them to video. By adopt-
ing multiple threads, the time cost of processing one frame
can be calculated by

T = max(26.8, 48.1 + 8.6 + 9.2, 30.4)ms = 65.9ms. (25)

Compared to single-threaded processing, the time cost is
reduced from 123.1 ms to 65.9 ms. However, the time latency
is still higher than the waiting time between two frames, i.e.,
33ms. According to Eq.(25), we can find that the time latency
is determined by the time cost of Process Frame thread, where
the processing time of feature extraction and tracking takes
the largest proportion, i.e., 73%. Therefore, it is better to
optimize the operators of feature extraction and tracking.

As aforementioned in Section 5.3.3, feature extraction
only requires local information, i.e., for each pixel, feature
extractor only uses the pixels around it to classify whether
it is a feature point. Therefore, we can split a frame into
blocks without affecting the locality of feature extraction,
and then use multiple threads to extract features for each
block separately. Specifically, as shown in Fig. 11, without
loss of generality, we first divide the frame into sixteen
blocks, and for each block, we calculate the color variance
inside the block to measure its salience. A larger color
variance implies higher salience. Hence, according to the
value of color variance, we then divide the blocks into
three categories, i.e, low salience block, medium salience
block and high salience block. For low, medium and high
salience block, we extract 10, 20 and 40 features respectively.
Finally, these sixteen blocks are distributed to four threads
sequentially from left to right and then from top to bottom.
In order to achieve load balancing, we let each thread
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process different number of blocks, and make the number
of features that each thread needs to extract are roughly
the same. By adopting multiple threads, the time cost of
feature extraction and tracking is reduced from 48.1 ms to
14.8 ms. And the time cost of processing one original frame
is reduced from 65.9 ms to 32.6 ms, which is lower than the
waiting time between two frames, i.e., 33 ms. Unit now, the
time latency meets the real-time requirement.

7 DISCUSSION

Translation Estimation: As described in Section 5.3.3, we
are expected to select the feature point pairs generated from
fixed 3D points to calculate the translation. If the camera
takes fast moving objects, our method may fail to estimate
the camera translation, due to the failure of extracting and
tracking enough feature points. This is also a common chal-
lenge faced by many CV-based methods [1], [15], [29], [30].
To tackle this issue, we can introduce the Extended Kalman
Filter (EKF) to further fuse the IMU-based method and CV-
based method, to mitigate this problem. As we know, the
IMU-based method has the problem of measurement noise
and error accumulation. However, by fusing the CV-based
method and introducing the EKF, we may quantify and
calibrate the measurement noise in acceleration, and then
estimate the translation with higher accuracy.

Frame Warping: As described in Section 6.3.3, when we
perform frame warping to obtain stabilized frames, because
the position of each frame is changed from the original
moving path to the smoothed moving path, there are some
missing areas within stabilized frames. In order to hide these
missing areas, we crop stabilized frames. This operation
causes the loss of information at video boundaries. To tackle
this issue, we can use inpainting algorithms [14], [31], [32]
to perform full-frame video stabilization. The idea of image
inpainting is using the pixel information from the surround-
ing areas and nearby frames to complete the missing pixels.
For example, according to the method described in [31], we
can search the most similar patch in color space among the
nearby frames, and use it to complete the missing areas.

8 PERFORMANCE EVALUATION

8.1 Experimental Setup
We have implemented a prototype system for video sta-
bilization using an Android phone (Lenovo PHAB2 Pro),
which is embedded with the inertial sensors including an
accelerometer and a gyroscope. In the experiment, we used
the Android phone to capture the 1080p videos, where the
sampling rate of the camera is 30 frames per second and the
sampling rate of the inertial sensors is 200Hz.

8.2 Evaluate the Performance of Motion Estimation
8.2.1 Accuracy
We first evaluated the accuracy of camera motion estima-
tion. We compared our solution with three baseline so-
lutions, i.e., the Gyro-based solution which estimates the
rotation via the gyroscope, the Acc-based solution which
estimates the translation via the accelerometer, and the CV-
based solution called eight-point-algorithm [11]. We use the
OptiTrack system [22] to capture the ground-truth of the
camera motion. For the rotation estimation, as shown in Fig.

12(a), the Gyro-based solution and our solution outperform
the CV-based solution. Specifically, as the jitter’s range is
increasing, the estimation error of the Gyro-based solution
and our solution is increasing from 0.7◦ to 1.7◦, whereas
the rotation error of CV-based solution is increasing from
2.7◦ to 4.6◦. For the translation estimation, as shown in Fig.
12(b), the estimation error of Acc-based solution is rather
large, whereas the estimation error of the CV-based solution
and our solution is rather small. Moreover, by fusing the
IMU-based method and the CV-based method, our solution
further outperforms the CV-based solution in the translation
estimation. Specifically, as the jitter’s range is increasing,
the estimation error of CV-based solution is increasing from
2.5cm to 4.0cm, whereas the estimation error of our solution
is always less than 2.3cm.

8.2.2 Time Efficiency
We then evaluated the time delay of camera motion esti-
mation per frame (one frame lasts 33ms in our setting). We
compared our solution with a traditional CV-based solu-
tions called eight-point-algorithm [11], which estimates the
rotation and translation simultaneously, by using eight pairs
of feature points. We applied our solution and the CV-based
solution in 30 videos, which are classified into three cate-
gories based on scene type, i.e., simple, normal, and com-
plex. For simple, normal and complex scene, we extracted
50∼100, 200∼300 and 500∼600 pairs of features points,
respectively, for camera motion estimation. As shown in Fig.
12(c), our solution using fewer feature point pairs clearly
outperforms the CV-based solution. Specifically, as the scene
varies from simple to complex, the time delay for our
solution increases from 1.5ms to 5ms per frame, whereas
the time delay for CV-based solution increases from 7ms to
16ms per frame.

8.3 Evaluate the Performance of Video Stabilization

To evaluate the performance of video stabilization, we used
the metric of Inter-frame Transformation Fidelity (ITF) [29],
i.e., ITF = 1

NF−1
∑NF−1
k=1 PSNR(k). Here, NF is the num-

ber of video frames, while PSNR(k) is the Peak Signal-to-
Noise Ratio between two consecutive frames Fk and Fk+1.
PSNR measures how an image is similar to another one,
as the consecutive frames in the stabilized video should be
more continuous than the original video, thus ITF can be
used to evaluate the stabilization degree of a video. Hence,
larger ITF implies that better performance is achieved for
video stabilization. We compared our solution with three
baseline solutions, i.e., 1) IMU-based solution: it estimates
the camera rotation via the gyroscope and estimates the
camera translation via the accelerometer [12]; 2) CV-based
solution: it estimates the camera rotation and translation via
CV-based method [13], [15]; 3) Warp Stabilizer: it is built
upon CV-based method [30] and adopted in the state-of-art
commercial offline system Named Adobe After Effects CC
2018.

8.3.1 Performance comparison with COTS solutions
We compared our solution with the optical image stabiliza-
tion method, which is widely adopted in commercial mobile
devices, e.g., iPhone 8 and Samsung S9. Specifically, by
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Fig. 12. The experiment results

changing the ranges of jitters, we evaluated the performance
of each approach while shooting the same scene. As shown
in Fig.12(d), the video is stabilized by each approach. More-
over, the ITF index of our solution, i.e., 26.4, 26.0 and 25.3
for small, medium and large jitters, respectively, is higher
than that of the other two approaches. It indicates that our
solution outperforms the existing approaches adopted in
commercial devices.

8.3.2 Performance comparison with different ranges and
frequencies of jitters
We evaluated the ITF by varying the range of movement
jitters from small (5◦, 1cm), medium (10◦, 3cm) and large
(15◦, 5cm) ranges. As shown in Fig. 12(e), it is found that,
as the range of movement jitters increases, the performance
of all solution all slightly decreases. We further evaluated
the ITF by varying the frequency of movement jitters from
low (1HZ), medium (3HZ) and high (4∼5HZ) frequencies.
As shown in Fig. 12(f), it is found that, as the frequency of
movement jitters increases, the performance of all solution
all slightly decreases. Nevertheless, in all situations, our
solution achieves the best performance, whereas the IMU-
based solution achieves the worst performance.

8.3.3 Performance with different types of camera motion
We evaluated the ITF by varying the types of camera mo-
tion in three modes, i.e., pure rotation, pure translation,
and hybrid motion (rotation and translation). As shown in
Fig. 12(g), when the camera motion is pure rotation, the
IMU-based solution and our solution outperforms the CV-
based solution, as the gyroscope can estimate the rotation
more accurately than CV-based method. When the camera
motion is pure translation or hybrid motion, the CV-based

solution achieves better performance than the IMU-based
solution, as the accelerometer cannot accurately estimate
the translation. Moreover, our solution achieves the best
performance. Specifically, for pure translation and hybrid
motion, the IMU-based solution increases ITF by 2% and
10%, the CV-based solution increases ITF by 18% and 19%,
the Warp Stabilizer at Adobe After Effects increases ITF by
21% and 25%, whereas our solution increases ITF by 26%
and 32%, respectively.

We also compared our solution with the Hyperlapse [33],
which is designed to create a stabilized time lapse for a long
video. As a CV-based solution, the Hyperlapse shows sim-
ilar performance to CV-based solution [15] under different
camera motions, and it is better than the CV-based solution
because of its additional rolling-shutter correction. Overall,
our solution achieves better performance than Hyperlapse.
Specifically, our solution achieves 3%, 6%, and 13% better
performance in ITF than Hyperlapse, respectively.

8.3.4 Performance with different parallaxes
We evaluated our solution in the scenarios with different
parallaxes. Parallax means the difference in the apparent
position of an object viewed along two different lines of
sight, and is measured by the angle of inclination between
those two lines. In the experiments, we evaluated the perfor-
mance of video stabilization by varying the average distance
between the shooting target and the camera from 15cm
to 150cm. We then evaluate the average parallax for each
frame (33ms per frame) according to the average moving
speed of the camera. During the process of video shooting,
since nearby objects have a larger parallax than more distant
objects when observed from different positions, hence, the
parallax is varied from 0.5◦ to 4.9◦ per frame on average.
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Note that, when the parallax is small, e.g., 0.5◦ per frame,
all solutions including the IMU-based solution, CV-based
solution, Warp Stabilizer and our solution achieve good
performance in regard to ITF. When the parallax is large,
e.g., 4.9◦ per frame, the ITF is decreased to a certain extent
for all solutions. This implies the video stabilization perfor-
mance is sensitive to the parallax. Nevertheless, our solution
achieves the best performance among all solutions, even if
when the parallax is 4.9◦ per frame, the ITF for our solution
is greater than 25.

8.3.5 Performance with different depths of field
We evaluated our solution in the scenarios with different
depths of field. Here, the depth means the distance between
the object and the camera. Different depths indicate that the
feature points will be extracted from different distances. In
the experiment, we vary the depth between the shooting
target and the camera from 5m to 15m, as shown in Fig.
12(i). The experimental results show that, for all three cases,
the videos are effectively stabilized by our solution with
different depths. Moreover, our solution outperforms the
other video-stabilization approaches.

8.3.6 Performance comparison with moving objects
In order to evaluate how the moving objects in the video
frames affect the system performance, we evaluate the ITF
of video shoot by changing the states of moving objects,
i.e., keeping stationary and moving in low, medium or
high speed. Here, “stationary” means that no moving ob-
jects appear in video frames. In regard to the other three
scenarios, three volunteers are asked to walk at 0.75m/s,
1.57m/s and run at 2.85m/s, respectively. As shown in Fig.
12(j), our solution outperforms the other solutions in regard
to the ITF metric. Besides, as the moving speed increases,
the ITF of our solution gradually decreases from 32 to
27. Nevertheless, the ITFs are all greater than 25 in four
scenarios, which are not greatly affected by the moving
speed. This is mainly because the moving objects usually
appear in the foreground in daily video shootings, while
the background keeps stationary. Even if some objects move
in high speed, the number of feature points extracted from
stationary background is enough to stabilize the video with
fairly good performance.

8.3.7 Performance with static/dynamic/hybrid scenarios
We evaluated the ITF in three different scenarios of video
shoot, i.e., 1) static scenario: most of the target points are
stationary, 2) dynamic scenario: most of the target points are
dynamically moving, 3) hybrid scenario: the target points
can be stationary or dynamically moving. As shown in Fig.
12(k), for the static or hybrid scenario, the CV-based solution
and our solution achieve better performance than the IMU-
based solution, since they can use enough feature points
to accurately estimate the camera motion. However, for
the dynamic scenario, there are not enough feature points
and long feature point tracks, the CV-based solution can
not accurately estimate the camera motion, thus it achieves
the worst performance. Nevertheless, our solution achieves
the best performance among four solutions. Specifically,
the IMU-based solution increases ITF by 6%, the CV-based

solution increases ITF by 1%, the Warp Stabilizer at Adobe
After Effects increases ITF by 3%, whereas our solution
increases ITF by 7%.

8.3.8 Performance with different metrics
We evaluated the quality of video stabilization with differ-
ent metrics. Specifically, we choose the MSE [34], MSSIM
[35] and ITF to evaluate four stabilization approaches.
MSE [34] denotes the mean square error of a video,
i.e. MSE = 1

NF−1
∑NF−1
i=1 absdiff(Fi+1, Fi)

2. Here, absdiff
means the absolute difference between two consecutive
frames. Clearly, smaller MSE implies that better perfor-
mance is achieved for video stabilization. MSSIM [35] is
mean structural similarity, which separates the task of
similar measurement into three comparisons: luminance,
contrast and structure. Larger MSSIM means better video
quality. As show in Fig. 12(l), the MSE of original videos is
largely reduced by our solution (from 230 to 73), the MSSIM
is increased from 0.89 to 0.97, and our solution increases the
ITF by 22%. Overall, according to three different evaluation
metrics, our solution achieves the best performance in all
cases.

9 CASE STUDY

9.1 Video Stabilization for Different Human Movements

To evaluate the video stabilization performance under real
scenarios, in the following experiments, the human subject
used handheld devices to shoot videos while he/she was
walking, climbing or riding. Then we compared our solu-
tion with the optical image stabilization (OIS) technology
adopted in the commercial smartphone, e.g., SAMSUNG
Galaxy Note8 (A video demo can be found in the supple-
mental video).
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Fig. 14. The experiment results

As shown in Fig. 13, the volunteers were told to use two
mobile phones, i.e., Lenovo PHAB2 Pro and SAMSUNG
Galaxy Note8, to capture videos respectively, when they
were climbing stairs in indoor environment, or walking,
riding a bike in outdoor environment. With the Lenovo
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mobile phone, we obtained the videos (Original video for
short) not been processed by any video stabilization so-
lutions. With the SAMSUNG mobile phone, we obtained
the videos (SAMSUNG video for short) been processed
by SAMSUNG’s optical image stabilization techniques. For
each type of human movement, we captured 20 videos
separately. After that, we performed our video stabilization
solution for videos captured by Lenovo phone and got sta-
bilized videos (Our video for short). We then compared the
three types of videos, i.e., Original video, SAMSUNG video
and our video, by using the same metric ITF mentioned
in Section 8.3. As shown in Fig. 14, whatever the human
movement was, our solution achieved the best performance.
On average, compared to original video, SAMSUNG video
increased ITF by 13%, whereas our video increased ITF by
22%.

9.2 Video Stabilization for Google Glass
We had also implemented a video stabilization system on
Google Glass. Due to the limitations of Google Glass in
hardware performance, different from smartphones, we im-
plemented the video stabilization system for Google Glass
based on the C/S architecture. Specifically, in the experi-
ment, we first used the Google Glass to capture the 720p
videos, where the sampling rate of the camera was 30 frames
per second. Moreover, during the process of video shoot, we
used the built-in accelerometer and gyroscope to capture the
linear acceleration and the angular rate at a frequency of
100Hz, respectively. Then as shown in Fig.15, we uploaded
the video captured by Google Glass to the server. The
server performed our video stabilization system to obtain
the stabilized video, and returned the stabilized video to
Google Glass. Finally, we evaluated the time efficiency and
performance of video stabilization for Google Glass.

9.2.1 Time Efficiency
There are three main stages in the video stabilization system
of Google Glass, i.e., uploading the original video to the
server, waiting for the server to process the original video,
and downloading the stabilized video from the server. The
stages are respectively called ’Uploading’, ’Waiting’ and
’Downloading’ for short. We first set the duration of the
original videos to 30 seconds, and without loss of generality,
we used the Lenovo PHAB2 Pro smartphone as the server.
Then we measured the time cost of processing one video
in each stage. We repeated the measurement for 50 times
to get the average time cost. According to the measurement
shown in Fig. 16(a), the time cost in three stages was 13.31,
21.51 and 16.21 s, respectively. Thus the average time cost
of processing a 30 seconds video was 51.03 seconds. This
case study shows that, our video stabilization method can
be effectively executed on the resource-limited wearable
devices, such as Google Glass.

9.2.2 Performance of Video Stabilization
To evaluate the performance of video stabilization in Google
Glass, the volunteers were told to wear Google Glass to
shoot videos while they were walking, climbing or riding.
Then we compared the original videos and the stabilized
videos by using the same metric ITF. As shown in Fig.16(b),

on average, compared to original video, stabilized video
increased ITF by 24%. The experiment results show that, our
video stabilization method can effectively tackle the sudden
movement from the head.

CameraIMU
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Video  
Stabilization

Server

Uploading the Original Video

Returning the Stabilized Video
(b)

Fig. 15. The video stabilization system for Google Glass
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15

20

25

30

35
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F

 o
f 

v
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eo
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Original Video

Our Solution

(b) Performance of video stabilization in
Google Glass

Fig. 16. The experiment results

10 CONCLUSION

In this paper, we present a video stabilization solution in
mobile devices via inertial-visual state tracking. By fusing
the IMU-based method and the CV-based method, our
solution is robust to the fast movement and violent jitters,
moreover, it greatly reduces the computation overhead in
video stabilization. In the context of recent visual-inertial
based video stabilization methods [12], [13], our solution
is able to estimate the translation and rotation in a more
accurate manner, and meets the real time requirement for
online processing, by directly reducing the number of un-
determined degrees of freedom from 6 to 3 for CV-based
processing. We implemented a prototype system on smart
glasses and smart phones, and evaluated the performance
under various real scenarios. The experiment results show
that our solution achieves 32% better performance than the
state-of-art solutions in regard to video stabilization. More-
over, the average processing time latency is 32.6ms, which
is lower than the conventional inter-frame time interval, i.e.,
33ms, and thus meets the real-time requirement for online
processing.
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