
CamK: Camera-Based Keystroke Detection
and Localization for Small Mobile Devices

Yafeng Yin ,Member, IEEE, Qun Li, Fellow, IEEE, Lei Xie ,Member, IEEE,

Shanhe Yi , Ed Novak , and Sanglu Lu,Member, IEEE

Abstract—Because of the smaller size of mobile devices, text entry with on-screen keyboards becomes inefficient. Therefore, we

present CamK, a camera-based text-entry method, which can use a panel (e.g., a piece of paper) with a keyboard layout to input text

into small devices. With the built-in camera of the mobile device, CamK captures images during the typing process and utilizes image

processing techniques to recognize the typing behavior, i.e., extract the keys, track the user’s fingertips, detect, and locate keystrokes.

To achieve high accuracy of keystroke localization and low false positive rate of keystroke detection, CamK introduces the initial training

and online calibration. To reduce the time latency, CamK optimizes computation-intensive modules by changing image sizes, focusing

on target areas, introducing multiple threads, removing the operations of writing or reading images. Finally, we implement CamK on

mobile devices running Android. Our experimental results show that CamK can achieve above 95 percent accuracy in keystroke

localization, with only a 4.8 percent false positive rate. When compared with on-screen keyboards, CamK can achieve a 1.25X typing

speedup for regular text input and 2.5X for random character input. In addition, we introduce word prediction to further improve the

input speed for regular text by 13.4 percent.

Index Terms—Mobile text-entry, camera, keystroke detection and localization, small mobile devices

Ç

1 INTRODUCTION

IN recent years, we have witnessed a rapid development
of electronic devices and mobile technology. Mobile devi-

ces (e.g., smartphones, Apple Watch) have become smaller
and smaller, in order to be carried everywhere easily, while
avoiding carrying bulky laptops all the time. However, the
small size of the mobile device brings many new challenges,
a typical example is inputting text into the small mobile
device without a physical keyboard.

In order to get rid of the constraint of bulky physical key-
boards, many virtual keyboards have been proposed, e.g.,
wearable keyboards, on-screen keyboards, projection key-
boards, etc. However, wearable keyboards introduce addi-
tional equipments like rings [1] and gloves [2]. On-screen
keyboards [3], [4] usually take up a large area on the screen
and only support single finger for text entry. Typing with a
small screen becomes inefficient. Projection keyboards [5], [6]
often need a visible light projector or lasers to display the
keyboard. To remove the additional hardwares, audio sig-
nal [7] and camera based virtual keyboards [8], [9] are pro-
posed. However, UbiK [7] requires the user to click keys

with their fingertips and nails, while the existing camera
based keyboards either slow the typing speed [8], or should
be used in controlled environments [9]. The existing schemes
are difficult to provide a similar user experience to using
physical keyboards.

To provide a PC-like text-entry experience, we propose a
camera-based keyboard CamK, a more natural and intuitive
text-entry method. As shown in Fig. 1, CamK works with
the front-facing camera of the mobile device and a paper
keyboard. CamK takes pictures as the user types on the
paper keyboard, and uses image processing techniques to
detect and locate keystrokes. Then, CamK outputs the corre-
sponding character of the pressed key. CamK can be used in
a wide variety of scenarios, e.g., the office, coffee shops, out-
doors, etc. However, to make CamK work well, we need to
solve the following key technical challenges.

(1) Location Deviation: On a paper keyboard, the inter-key
distance is only about two centimeters [7]. With image
processing techniques, there may exist a position deviation
between the real fingertip and the detected fingertip. This
deviation may lead to localization errors of keystrokes. To
address this challenge, CamK introduces the initial train-
ing to get the optimal parameters for image processing.
Then, CamK uses an extended region to represent the
detected fingertip, to tolerate the position deviation.
Besides, CamK utilizes the features of a keystroke (e.g., the
fingertip is located in the key for a certain duration, the
pressed key is partially obstructed by the fingertip, etc.) to
verify the validity of a keystroke.

(2) False Positives: A false positive occurs when a non-
keystroke (i.e., a period in which no fingertip is pressing any
key) is recognized as a keystroke. Without the assistance of

� Y. Yin, L. Xie, and S. Lu are with the State Key Laboratory for Novel
Software Technology, Nanjing University, Nanjing 210023, China.
E-mail: {yafeng, lxie, sanglu}@nju.edu.cn.

� Q. Li and S. Yi are with the Department of Computer Science, College of
William andMary,Williamsburg, VA 23187. E-mail: {liqun, syi}@cs.wm.edu.

� E. Novak is with the Computer Science Department, Franklin and Mar-
shall College, Lancaster, PA 17604. E-mail: enovak@fandm.edu.

Manuscript received 3 Feb. 2017; revised 24 Dec. 2017; accepted 15 Jan. 2018.
Date of publication 25 Jan. 2018; date of current version 29 Aug. 2018.
(Corresponding author: Lei Xie.)
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TMC.2018.2798635

2236 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 17, NO. 10, OCTOBER 2018

1536-1233� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-9497-6244
https://orcid.org/0000-0002-9497-6244
https://orcid.org/0000-0002-9497-6244
https://orcid.org/0000-0002-9497-6244
https://orcid.org/0000-0002-9497-6244
https://orcid.org/0000-0002-2994-6743
https://orcid.org/0000-0002-2994-6743
https://orcid.org/0000-0002-2994-6743
https://orcid.org/0000-0002-2994-6743
https://orcid.org/0000-0002-2994-6743
https://orcid.org/0000-0003-1668-0613
https://orcid.org/0000-0003-1668-0613
https://orcid.org/0000-0003-1668-0613
https://orcid.org/0000-0003-1668-0613
https://orcid.org/0000-0003-1668-0613
https://orcid.org/0000-0002-2204-1546
https://orcid.org/0000-0002-2204-1546
https://orcid.org/0000-0002-2204-1546
https://orcid.org/0000-0002-2204-1546
https://orcid.org/0000-0002-2204-1546
mailto:
mailto:
mailto:

other resources like audio signals, CamK should detect
keystrokes only with images. To address this challenge,
CamK combines keystroke detection with keystroke locali-
zation. For a potential keystroke, if there is no valid key
pressed by the fingertip, CamK will remove the keystroke
and recognize it as a non-keystroke. Additionally, CamK
introduces online calibration, i.e., using the movement fea-
tures of the fingertip after a keystroke, to further decrease
the false positive rate.

(3) Processing Latency: To serve as a text-entry method,
when the user presses a key on the paper keyboard, CamK
should output the character of the keywithout any noticeable
latency. However, due to the limited computing resources of
small mobile devices, the heavy computation overhead of
image processing will lead to a large latency. To address this
challenge, CamK optimizes the computation-intensive mod-
ules by adaptively changing image sizes, focusing on the tar-
get area in the large-size image, adopting multiple threads
and removing the operations of writing/reading images.

We make the following contributions in this paper (a pre-
liminary version of this work appeared in [10]).

� We design a practical framework for CamK, which
operates using a smart mobile device camera and a
portable paper keyboard. Based on image process-
ing, CamK can detect and locate the keystroke with
high accuracy and low false positive rate.

� We realize real time text-entry for small mobile
devices with limited resources, by optimizing the
computation-intensive modules. Additionally, we
introduce word prediction to further improve the
input speed and reduce the error rate.

� We implement CamK on smartphones running
Android. We first evaluate each module in CamK.
Then, we conduct extensive experiments to test the
performance of CamK. After that, we compare CamK
with othermethods in input speed and error rate.

2 RELATED WORK

Considering the small sizes of mobile devices, a lot of virtual
keyboards are proposed for text entry, e.g., wearable key-
boards, on-screen keyboards, projection keyboards, camera
based keyboards, etc.

Wearable Keyboards. Wearable keyboards sense and recog-
nize the typing behavior based on the sensors built into rings
[1], [11], gloves [12], and so on. TypingRing [13] utilizes the
embedded sensors of the ring to input text. Finger-Joint key-
pad [14] works with a glove equipped with the pressure sen-
sors. The Senseboard [2] consists of two rubber pads and
senses the movements in the palm to get keystrokes. Funk
et al. [15] utilize a touch sensitive wristband to enter text

based on the location of the touch. Thesewearable keyboards
often need the user to wear devices around the hands or fin-
gers, thus leading to the decrease of user experience.

On-Screen Keyboards. On-screen keyboards allow the user
to enter characters on a touch screen. Considering the lim-
ited area of the keyboard on the screen, BigKey [3] and
ZoomBoard [4] adaptively change the size of keys. Context-
Type [16] leverages hand postures to improve mobile touch
screen text entry. Kwon et al. [17] introduce the regional
error correction method to reduce the number of necessary
touches. ShapeWriter [18] recognizes a word based on the
trace over successive letters in the word. Sandwich key-
board [19] affords ten-finger touch typing by utilizing a
touch sensor on the back side of a device. Usually, on-screen
keyboards occupy the screen area and support only one fin-
ger for typing. Besides, it often needs to switch between dif-
ferent screens to type letters, digits, punctuations, etc.

Projection Keyboards. Projection keyboards usually need a
visible light projector or lasers to cast a keyboard, and then
utilize image processing methods [5] or infrared light [6] to
detect the typing events. Hu et al. use a pico-projector to
project the keyboard on the table, and then detect the touch
interaction by the distortion of the keyboard projection [20].
Roeber et al. utilize a pattern projector to display the key-
board layout on the flat surface, and then detect the key-
board events based on the intersection of fingers and
infrared light [21]. The projection keyboard often requires
the extra equipments, e.g., a visible light projector, infrared
light modules, etc. The extra equipments increase the cost
and introduce the inconvenience of text entry.

Camera Based Keyboards. Camera based virtual keyboards
use the captured image [22] or video [23] to infer the key-
stroke. Gesture keyboard [22] gets the input by recognizing
the finger’s gesture. It works without a keyboard layout, thus
the user needs to remember the mapping between the keys
and the finger’s gestures. Visual Panel [8] works with a
printed keyboard on a piece of paper. It requires the user to
use only one finger and wait for one second before each key-
stroke. Malik et al. present the Visual Touchpad [24] to track
the 3D positions of the fingertips based on two downward-
pointing cameras and a stereo. Adajania et al. [9] detect the
keystroke based on shadow analysis with a standard web
camera. Hagara et al. estimate the finger positions and detect
clicking events based on edge detection, fingertip localization,
etc [25]. In regard to the iPhone app paper keyboard [26],
which only allows the user to use one finger to input letters.
The above research work usually focuses on detecting and
tracking the fingertips, instead of locating the fingertip in a
key’s area of the keyboard, which is researched in our paper.

In addition to the above text-entry solutions, MacKenzie
et al. [27] describe the text entry for mobile computing.
Zhang et al. [28] propose Okuli to locate user’s finger based
on visible light communication modules, LED, and light
sensors. Wang et al. [7] propose UbiK to locate the keystroke
based on audio signals. The existing work usually needs
extra equipments, or only allows one finger to type, or
needs to change the user’s typing behavior, while difficult
to provide a PC-like text-entry experience. In this paper, we
propose a text-entry method based on the built-in camera of
the mobile device and a paper keyboard, to provide a simi-
lar user experience to using physical keyboards.

Fig. 1. A typical use case of CamK.

YIN ETAL.: CAMK: CAMERA-BASED KEYSTROKE DETECTION AND LOCALIZATION FOR SMALL MOBILE DEVICES 2237

3 FEASIBILITY STUDY AND OVERVIEW OF CAMK

In order to show the feasibility of locating keystrokes based
on image processing techniques, we first show the observa-
tions of a keystroke from the camera’s view. After that, we
will describe the system overview of CamK.

3.1 Observations of a Keystroke

In Fig. 2, we show the frames/images captured by the
camera during two consecutive keystrokes. The origin of
axes is located in the top left corner of the image, as
shown in Fig. 2a. The hand located in the left area of the
image is called left hand, while the other is called the
right hand, as shown in Fig. 2b. From left to right, the fin-
gers are called finger i in sequence, i 2 ½1; 10�, as shown
in Fig. 2c. The fingertip pressing the key is called Stroke-
Tip, while that pressed key is called StrokeKey, as shown
in Fig. 2d.

When the user presses a key, i.e., a keystroke occurs, the
StrokeTip and StrokeKey often have the following features,
which can be used to track, detect and locate the keystroke.

(1) Coordinate position: The StrokeTip usually has the larg-
est vertical coordinate among the fingers on the same
hand, because the user tends to stretch out one finger
when typing a key. An example is finger 9 in Fig. 2a.
While considering the particularity of thumbs, this
feature may not be suitable for thumbs. Therefore,
we separately detect the StrokeTip in thumbs and
other fingertips.

(2) Moving state: The StrokeTip stays on the StrokeKey for a
certain duration in a typing operation, as finger 2
shown in Figs. 2c and 2d. If the positions of the fin-
gertip keep unchanged, a keystroke may happen.

(3) Correlated location: The StrokeTip is located in the Stro-
keKey, in order to press that key, such as finger 9
shown in Fig. 2a and finger 2 shown in Fig. 2d.

(4) Obstructed view: The StrokeTip obstructs the StrokeKey
from the view of the camera, as shown in Fig. 2d.
The ratio of the visually obstructed area to the whole
area of the key can be used to verify whether the key
is really pressed.

(5) Relative distance: The StrokeTip usually achieves the
largest vertical distance between the fingertip and remain-
ing fingertips of the same hand. This is because the user
usually stretches out the finger to press a key. Thus
the feature can be used to infer which hand gener-
ates the keystroke. In Fig. 2a, the vertical distance dr
between the StrokeTip (i.e., Finger 9) and remaining
fingertips in right hand is larger than that (dl) in left
hand. Thus we choose finger 9 as the StrokeTip from
two hands, instead of finger 2.

3.2 System Overview

As shown in Fig. 1, CamK works with a mobile device and a
paper keyboard. The device uses the front-facing camera to
capture the typing process, while the paper keyboard is
placed on a flat surface and located in the camera’s view. We
take Fig. 1 as an example to describe the deployment. In
Fig. 1, the mobile device is a Samsung N9109W smartphone,
while lmeans the distance between the device and the printed
keyboard, ameans the angle between the plane of the device’s
screen and that of the keyboard. In Fig. 1, we set l ¼ 13:5 cm,
a ¼ 90�, to make the letter keys large enough in the camera’s
view. In fact, there is no strict requirements of the above
parameters’ value, especially when the position of the camera
varies in different devices. In Fig. 1, when we fix the A4 sized
paper keyboard, l can range in ½13:5 cm; 18:0 cm�, while a can
range in ½78:8�; 90:0��. In CamK, even if some part of the key-
board is out of the camera’s view, CamK still works.

The architecture of CamK is shown in Fig. 3. The input is
the image taken by the camera and the output is the charac-
ter of the pressed key. Before a user begins typing, CamK
uses Key Extraction to detect the keyboard and extract each
key from the image. When the user types, CamK uses Fin-
gertip Detection to extract the user’s hands and detect their
fingertips. Based on the movements of fingertips, CamK
uses Keystroke Detection and Localization to detect a possible
keystroke and locate the keystroke. Finally, CamK uses Text
Output to output the character of the pressed key.

4 SYSTEM DESIGN

According to Fig. 3, CamK consists of four components: key
extraction, fingertip detection, keystroke detection and
localization, and text output. Obviously, text output is easy
to be implemented. Therefore, we mainly describe the first
three components.

Fig. 2. Frames during two consecutive keystrokes.

Fig. 3. Architecture of CamK.

2238 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 17, NO. 10, OCTOBER 2018

4.1 Key Extraction

Without loss of generality, CamK adopts the common
QWERTY keyboard layout, which is printed in black and
white on a piece of paper, as shown in Fig. 1. In order to
eliminate the effects of background, we first detect the
boundary of the keyboard. Then, we extract each key from
the keyboard. Therefore, key extraction contains three parts:
keyboard detection, key segmentation, and mapping the
characters to the keys, as shown in Fig. 3.

4.1.1 Keyboard Detection

We use the Canny edge detection algorithm [29] to obtain
the edges of the keyboard. Fig. 4b shows the edge detection
result of Fig. 4a. However, the interference edges (e.g., the
paper’s edge/longest edge in Fig. 4b) should be removed.
Based on Fig. 4b, the edges of the keyboard should be close
to the edges of keys. We use this feature to remove pitfall
edges, the result is shown in Fig. 4c. Additionally, we adopt
the dilation operation [30] to join the dispersed edge points
which are close to each other, to get better edges/bound-
aries of the keyboard. After that, we use the Hough trans-
form [8] to detect the lines in Fig. 4c. Then, we use the
uppermost line and the bottom line to describe the position
range of the keyboard, as shown in Fig. 4d. Similarly, we
can use the Hough transform [8] to detect the left/right
edge of the keyboard. If there are no suitable edges detected
by the Hough transform, it is usually because the keyboard
is not perfectly located in the camera’s view. In this case, we
simply use the left/right boundary of the image to represent
the left/right edge of the keyboard. As shown in Fig. 4e,
we extend the four edges (lines) to get four intersections
B1ðx1; y1Þ; B2ðx2; y2Þ; B3ðx3; y3Þ; B4ðx4; y4Þ, which are used to
describe the boundary of the keyboard.

4.1.2 Key Segmentation

Considering the short interference edges generated by the
edge detection algorithm, it is difficult to accurately seg-
ment each key from the keyboard with detected edges. Con-
sequently, we utilize the color difference between the white
keys and the black background and the area of a key for key
segmentation, to reduce the effect of pitfall areas.

First, we introduce color segmentation to distinguish the
white keys and black background. Considering the conve-
nience of image processing, we represent the color in YCrCb
space. In YCrCb space, the color coordinate (Y, Cr, Cb) of a
white pixel is (255, 128, 128), while that of a black pixel is (0,
128, 128). Thus, we only compute the difference in the Y
value between the pixels to distinguish the white keys from
the black background. If a pixel is located in the keyboard,
while satisfying 255� "y � Y � 255, the pixel belongs to a
key. The offsets "y 2 N of Y is mainly caused by light

conditions. "y can be estimated in the initial training (see
Section 5.1). The initial/default value of "y is 50.

When we obtain the white pixels, we need to get the con-
tours of keys and separate the keys from one another. To
avoid pitfall areas such as small white areas which do not
belong to any key, we introduce the area of a key. Based on
Fig. 4e, we first use B1; B2; B3; B4 to calculate the area Sb of

the keyboard as Sb ¼ 1
2 � ðjB1B2

���!�B1B4
���!j þ jB3B4

���!�B3B2
���!jÞ.

Then, we calculate the area of each key. We use N to repre-
sent the number of keys in the keyboard. Considering the
size difference between keys, we treat larger keys (e.g., the
space key) as multiple regular keys (e.g., A-Z, 0-9). For
example, the space key is treated as five regular keys. In this
way, we will change N to Navg. Then, we can estimate the
average area of a regular key as Sb=Navg. In addition to size
difference between keys, the camera’s view can also affect
the area of a key in the image. Therefore, we introduce al,
ah to describe the range of a valid area Sk of a key as
Sk 2 ½al � Sb

Navg
;ah � Sb

Navg
�. We set al ¼ 0:15, ah ¼ 5 in CamK,

based on extensive experiments. The key segmentation
result of Fig. 4e is shown in Fig. 4f. Then, we use the location
of the space key (biggest key) to locate other keys, based on
the relative locations between keys.

4.2 Fingertip Detection

After extracting the keys, we need to track the fingertips to
detect and locate the keystrokes. To achieve this goal, we
should first detect the fingertip with hand segmentation
and fingertip discovery, as shown below.

4.2.1 Hand Segmentation

Skin segmentation [30] is often used for hand segmentation.
In the YCrCb color space, a pixel (Y, Cr, Cb) is determined
to be a skin pixel, if it satisfies Cr 2 ½133; 173� and Cb 2
½77; 127�. However, the threshold values of Cr and Cb can be
affected by the surroundings such as lighting conditions. It
is difficult to choose suitable threshold values for Cr and
Cb. Therefore, we combine Otsu’s method [31] and the red
channel in YCrCb color space for skin segmentation.

In the YCrCb color space, the red channel Cr is essential
to human skin color. Therefore, with a captured image, we
use the grayscale image that is split based on the Cr channel
as an input for Otsu’s method [31]. Otsu’s method can auto-
matically perform clustering-based image thresholding, i.e.,
calculate the optimal threshold to separate the foreground
and background. The hand segmentation result of Fig. 5a is
shown in Fig. 5b, where the white regions represent the
hand regions with high value in Cr channel, while the black
regions represent the background. However, around the
hands, there exist some interference regions, which may
change the contours of fingers, resulting in detecting wrong

Fig. 4. Keyboard detection and key extraction.

YIN ETAL.: CAMK: CAMERA-BASED KEYSTROKE DETECTION AND LOCALIZATION FOR SMALL MOBILE DEVICES 2239

fingertips. Thus, CamK introduces the following erosion and
dilation operations [32]. We first use the erosion operation to
isolate the hands from keys and separate each finger. Then,
we use the dilation operation to smooth the edge of the fin-
gers. Fig. 5c shows the optimized result of hand segmenta-
tion. After that, we select the top two segmented areas as
hand regions, i.e., left hand and right hand, to further reduce
the effect of inference regions, such as the red areas in Fig. 5c.

4.2.2 Fingertip Discovery

After we extract the fingers, we will detect the fingertips.
We can differentiate between the thumbs (i.e., finger 5-6 in
Fig. 2c) and non-thumbs (i.e., finger 1� 4, 7� 10 in Fig. 2c)
in shape and typing movement, as shown in Fig. 6.

In a non-thumb, the fingertip is usually a convex vertex,
as shown in Fig. 6a. For a point Piðxi; yiÞ located in the con-
tour of a hand, by tracing the contour, we can select the
point Pi�qðxi�q; yi�qÞ before Pi and the point Piþqðxiþq; yiþqÞ
after Pi. Here, i; q 2 N. We calculate the angle ui between the

two vectors PiPi�q
����!

, PiPiþq
����!

, according to Eq. (1). In order to
simplify the calculation for ui, we map ui in the range
ui 2 ½0�; 180��. If ui 2 ½ul; uh�; ul < uh, we call Pi a candidate
vertex. Considering the relative locations of the points, Pi

should also satisfy yi > yi�q and yi > yiþq. Otherwise, Pi

will not be a candidate vertex. If there are multiple candi-
date vertexes, such as P

0
i in Fig. 6a, we will choose the vertex

having the largest vertical coordinate, because it has higher
probability of being a fingertip, as Pi shown in Fig. 6a. Here,
the largest vertical coordinate means the local maximum in
a finger’s contour, such as the red circle shown in Fig. 5e.
The range of a finger’s contour can be limited by Eq. (1), i.e.,
the angle feature of a finger. Based on extensive experi-
ments, we set ul ¼ 60�, uh ¼ 150�, q ¼ 20 in this paper

ui ¼ arccos
PiPi�q
����! � PiPiþq

����!
jPiPi�q
����!j � jPiPiþq

����!j
: (1)

In a thumb, the “fingertip” also means a convex vertex of
the finger. Thus we still use Eq. (1) to represent the shape of
the fingertip in a thumb. However, the position of the con-
vex vertex can be different from that of a non-thumb. As

shown in Fig. 6b, the relative positions of Pi�q, Pi, Piþq are
different from that in Fig. 6a. In Fig. 6b, we show the
thumb of the left hand. Obviously, Pi�q, Pi, Piþq do not
satisfy yi > yi�q and yi > yiþq. Therefore, we use
ðxi � xi�qÞ � ðxi � xiþqÞ > 0 to describe the relative locations
of Pi�q, Pi, Piþq in thumbs. Then, we choose the vertex with
largest vertical coordinate in a finger’s contour as the finger-
tip, as mentioned in the last paragraph.

In fingertip detection, we only need to detect the points
located on the bottom edge (from the left most point to the
right most point) of the hand, such as the blue contour of
right hand in Fig. 5d. The shape feature ui and the positions
in vertical coordinates yi along the bottom edge are shown
Fig. 5e. If we can detect five fingertips in a hand with ui and
yi�q, yi, yiþq, we assume that we have also found the thumb.
At this time, the thumb presses a key like a non-thumb. Oth-
erwise, we detect the fingertip of the thumb in the right
most area of left hand or left most area of right hand accord-
ing to ui and xi�q, xi, xiþq. The detected fingertips of Fig. 5a
are marked in Fig. 5f.

4.3 Keystroke Detection and Localization

After detecting the fingertip, we will track the fingertip to
detect a possible keystroke and locate it for text entry. The
keystroke is usually correlated with one or two fingertips,
therefore we first select the candidate fingertip having a high
probability of pressing a key, instead of detecting all finger-
tips, to reduce the computation overhead. Then, we track
the candidate fingertip to detect the possible keystroke. Finally,
we correlate the candidate fingertip with the pressed key to
locate the keystroke.

4.3.1 Candidate Fingertip Selection in Each Hand

CamK allows the user to use all of their fingers for text-
entry, thus the keystroke may come from the left or right
hand. Based on the observations (see Section 3.1), the finger-
tip (i.e., StrokeTip) pressing the key usually has the largest
vertical coordinate in that hand, such as finger 9 shown in
Fig. 2a. Therefore, we first select the candidate fingertip
with the largest vertical coordinate in each hand. We
respectively use Cl and Cr to represent the points located
in the contour of left hand and right hand. For a point
Plðxl; ylÞ 2 Cl, if Pl satisfies yl 	 yjð8Pjðxj; yjÞ 2 Cl; j 6¼ lÞ,
then Pl will be selected as the candidate fingertip in the left
hand. Similarly, we can get the candidate fingertip Prðxr; yrÞ
in the right hand. In this step, we only need to get Pl and Pr,
instead of detecting all fingertips.

4.3.2 Keystroke Detection Based on Fingertip Tracking

As described in the observations, when the user presses a
key, the fingertip will stay at that key for a certain duration.

Fig. 5. Fingertip detection.

Fig. 6. Features of a fingertip.

2240 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 17, NO. 10, OCTOBER 2018

Therefore, we can use the location variation of the candidate
fingertip to detect a possible keystroke. In Frame i, we use
Pliðxli ; yliÞ and Priðxri ; yriÞ to represent the candidate finger-
tips in the left hand and right hand, respectively. If the can-
didate fingertips in frame ½i� 1; i� satisfy Eq. (2) in left hand
or Eq. (3) in right hand, the corresponding fingertip will be
treated as static, i.e., a keystroke probably happens. Based
on extensive experiments, we set Dr ¼ 5 empiricallyffi

ðxli � xli�1
Þ2 þ ðyli � yli�1

Þ2
q

� Dr; (2)

ffi
ðxri � xri�1

Þ2 þ ðyri � yri�1
Þ2

q
� Dr: (3)

4.3.3 Keystroke Localization by Correlating the

Fingertip with the Pressed Key

After detecting a possible keystroke, we correlate the candi-
date fingertip and the pressed key to locate the keystroke,
based on the observations of Section 3.1. In regard to the
candidate fingertips, we treat the thumb as a special case,
and also select it as a candidate fingertip at first. Then, we
get the candidate fingertip set Ctip ¼ fPli ; Pri ; left thumb
in frame i; right thumb in frame ig. After that, we can locate
the keystroke by using Algorithm 1.

Algorithm 1. Keystroke Localization

Input: Candidate fingertip set Ctip in frame i.
Remove fingertips out of the keyboard from Ctip .
for Pi 2 Ctip do
Obtain candidate key set Ckey around Pi.
forKj 2 Ckey do
if Pi is located inKj then
Calculate the coverage ratio rkj ofKj.
if rkj < rl then
RemoveKj from Ckey.

else RemoveKj from Ckey.

if Ckey 6¼ ; then
SelectKj with largest rkj from Ckey.
< Pi;Kj > forms a possible keystroke.

else Remove Pi from Ctip.

if Ctip ¼ ; thenNo keystroke occurs, return.
if jCtipj ¼ 1 then Return the pressed key.
Select < Pi;Kj > with largest ratio rkj in each hand.
Obtain < Pl;Kl > (< Pr;Kr >) in left (right) hand.
Calculate relative distance dl (dr) in left (right) hand.
if dl > dr then ReturnKl. else ReturnKr.
Output: The pressed key.

Eliminating Impossible Fingertips. For convenience, we use
Pi to represent the fingertip in Ctip, i.e., Pi 2 Ctip; i 2 ½1; 4�. If

a fingertip Pi is not located in the keyboard region, CamK
eliminates it from the candidate fingertips Ctip.

Selecting the Nearest Candidate Keys. For each candidate
fingertip Pi, we first search the candidate keys which are
probably pressed by Pi. As shown in Fig. 7a, although the
real fingertip is Pi, the detected fingertip is P̂i. We use P̂i to
search the candidate keys. We use Kcjðxcj; ycjÞ to represent
the centroid of key Kj. Then we get two rows of keys near-

est the location P̂iðx̂i; ŷiÞ (i.e., the rows with two smallest
jycj � ŷij). For each row, we select the two nearest keys (i.e.,
the keys with two smallest jxcj � x̂ij). In Fig. 7a, the candi-
date key set Ckey is consisted ofK1; K2; K3; K4. Fig. 8a shows
the candidate keys of each fingertip.

Retaining Candidate Keys Containing the Candidate Finger-
tip. If a key is pressed by the user, the fingertip will be
located in that key. Thus we use the location of the fingertip
P̂iðx̂i; ŷiÞ to verify whether a candidate key contains the fin-
gertip, to remove the invalid candidate keys. As shown in
Fig. 7a, there exists a small deviation between the real finger-
tip and the detected fingertip. Therefore, we extend the range
of the detected fingertip toRi, as shown in Fig. 7a. If any point
Pkðxk; ykÞ in the rangeRi is located in a candidate keyKj, P̂i is

considered to be located in Kj. Ri is calculated as fPk 2
Rij

ffi
ðx̂i � xkÞ2 þ ðŷi � ykÞ2

q
� Drg.We setDr ¼ 5 empirically.

As shown in Fig. 7b, a key is represented as a quadrangle
ABCD. If a point is located in ABCD, when we traverse
ABCD clockwise, the point will be located in the right side
of each edge in ABCD. As shown in Fig. 2a, the origin of
coordinates is located in the top left corner of the image.
Therefore, if the fingertip P 2 Ri satisfies Eq. (4), it is located
in the key. CamK will keep it as a candidate key. Otherwise,
CamK removes the key from the candidate key set Ckey. In
Fig. 7a, K1; K2 are the remaining candidate keys. The candi-
date keys contain the fingertip in Fig. 8a is shown in Fig. 8b

AB
�!� AP

�! 	 0; BC
�!� BP

�! 	 0;

CD
��!� CP

�! 	 0; DA
��!�DP

��! 	 0:
(4)

Calculating the Coverage Ratios of Candidate Keys. When a
key is pressed, it is visually obstructed by the fingertip, as

Fig. 7. Candidate keys and Candidate fingertips.

Fig. 8. Candidate fingertips/keys in each step.

YIN ETAL.: CAMK: CAMERA-BASED KEYSTROKE DETECTION AND LOCALIZATION FOR SMALL MOBILE DEVICES 2241

the dashed area of key K1 shown in Fig. 7a. We use the cov-
erage ratio to measure the visually obstructed area of a can-
didate key, in order to remove wrong candidate keys. For a
candidate key Kj, whose area is Skj , the visually obstructed

area is Dkj , and its coverage ratio is rkj ¼
Dkj

Skj
. For a larger

key (e.g., the space key), we update rkj by multiplying a key

size factor fj, i.e., rkj ¼ minðDkj

Skj
� fj; 1Þ, where fj ¼ Skj=

�Sk.

Here, �Sk means the average area of a key, i.e, �Sk ¼ Sb=Navg.
If rkj 	 rl, the key Kj is still a candidate key. Otherwise,
CamK removes it from the candidate key set Ckey. We set
rl ¼ 0:25 by default. For each hand, if there is more than
one candidate key, we will keep the key with largest cover-
age ratio as the final candidate key. For a candidate fingertip,
if there is no candidate key associated with it, the fingertip
will be eliminated. Fig. 8c shows each candidate fingertip
and its associated key.

4.3.4 Vertical Distance with Remaining Fingertips

Until now, there is one candidate fingertip in each hand at
most. If there are no candidate fingertips, then no keystroke
is detected. If there is only one candidate fingertip, then the
fingertip is the StrokeTip while the associated key is Stroke-
Key, they represent the keystroke. However, if there are two
candidate fingertips, we will utilize the vertical distance
between the candidate fingertip and the remaining fingertips
to choose themost probable StrokeTip, as shown in Fig. 2a.

We use Plðxl; ylÞ and Prðxr; yrÞ to represent the candidate
fingertips in the left hand and right hand, respectively.
Then, we calculate the distance dl between Pl and the
remaining fingertips in the left hand, and the distance dr
between Pr and the remaining fingertips in the right hand.
Here, dl ¼ jyl � 1

4 �
Pj¼5

j¼1 yj; j 6¼ lj, while dr ¼ jyr � 1
4 �

Pj¼10
j¼6

yj; j 6¼ rj. Here, yj represents the vertical coordinate of fin-
gertip j. If dl > dr, we choose Pl as the StrokeTip. Otherwise,
we choose Pr as the StrokeTip. The associated key for the
StrokeTip is the pressed key StrokeKey. In Fig. 8d, we choose
fingertip 3 in the left hand as StrokeTip. However, consider-
ing the effect of camera’s view, sometimes dl (dr) may fail to
locate the keystroke accurately. Therefore, for the unse-
lected candidate fingertip (e.g., fingertip 8 in Fig. 8d), we
will not discard its associated key directly. Specifically, we
sort the previous candidate keys which contain the candi-
date fingertip based on the coverage ratio in descending
order. Finally, we select top four candidates keys and show
them on the screen. The user can press the candidate key for
text input (see Fig. 1), to tolerate the localization error.

5 OPTIMIZATIONS FOR KEYSTROKE LOCALIZATION

AND IMAGE PROCESSING

Considering the deviation caused by image processing, the
influence of light conditions, and other factors, we introduce
the initial training to select the suitable values of parameters
for image processing and utilize online calibration to
improve the performance of keystroke detection and locali-
zation. In addition, considering the limited resources of
small mobile devices, we also introduce multiple optimiza-
tion techniques to reduce the time latency and energy cost
in CamK.

5.1 Initial Training

Optimal Parameters for Image Processing. For key segmenta-
tion (see Section 4.1.2), "y is used for tolerating the change
of Y caused by the environment. Initially, "y ¼ 50. CamK
updates "yi ¼ "yi�1

þ 1, when the number of extracted
keys decreases, it stops. Then, CamK sets "y to 50 and
updates "yi ¼ "yi�1

� 1, when the number of extracted keys
decreases, it stops. In the process, when CamK gets maxi-
mum number of keys, the corresponding value "yi is
selected as the optimal value for "y.

In hand segmentation, CamK uses erosion and dilation
operations, which respectively use a kernel B [32] to process
images. To get a suitable size of B, the user first puts his/her
hands on the home row of the keyboard (see Fig. 5a). For sim-
plicity, we set the kernel sizes for erosion and dilation to be
equal. The initial kernel size is z0 ¼ 0. Then, CamK updates
zi ¼ zi�1 þ 1. When CamK can localize each fingertip in the
correct key with zi, then CamK sets the kernel size as z ¼ zi.
In initial training, the user puts on the hands based on the
on-screen instructions, it usually spends less than 10s.

Frame Rate Selection. CamK sets the initial/default frame
rate of the camera to be f0 ¼ 30fps (frames per second),
which is usually the maximal possible frame rate. We use n0i

to represent the number of frames containing the ith key-
stroke. When the user has pressed u keys, we can get
the average number of frames during a keystroke as

�n0 ¼ 1
u �

Pi¼u
i¼1 n0i . In fact, �n0 reflects the duration of a key-

stroke.When the frame rate f changes, the number of frames
in a keystroke �nf changes. Intuitively, a smaller value of �nf

can reduce the image processing time, while a larger value of
�nf can improve the accuracy of keystroke localization. Based
on extensive experiments (see Section 7.3), we set �nf ¼ 3,

thus f ¼ df0 � �nf
�n0
e.

5.2 Online Calibration

Removing False Positive Keystrokes. Under certain conditions,
the user does not type any key while keeping the fingers sta-
tionary, CamK may misclassify the non-keystroke as a key-
stroke. Thus we introduce a temporary character to mitigate
this problem.

In the process of pressing a key, the StrokeTip moves
towards the key, stays at that key, and then moves away.
The vertical coordinate of the StrokeTip first increases, then
pauses, then decreases. If CamK has detected a keystroke in
�nf consecutive frames, it displays the current character on
the screen as a temporary character. In the next frame(s), if
the position of the StrokeTip does not satisfy the features of a
keystroke, CamK will cancel the temporary character. This
does not have much impact on the user’s experience,
because of the short time between two consecutive frames.
Besides, CamK also displays the candidate keys around the
StrokeTip, the user can choose them for text input.

Movement of Smartphone or Keyboard. CamK presumes that
the smartphone and the keyboard do not move while in use.
For best results, we recommend the user to tape the paper
keyboard on a flat surface. Nevertheless, to alleviate the
effect caused by the movements of the mobile device or the
keyboard, we offer a simple solution. If the user continu-
ously uses the Delete key on the screen multiple times (e.g.,
larger than 3 times), CamK will inform the user to move

2242 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 17, NO. 10, OCTOBER 2018

his/her hands away from the keyboard for relocation. After
that, the user can continue the typing process. The reloca-
tion process just needs the user to move away the hands
and it is usually less than 10s.

5.3 Real Time Image Processing

As a text-entry method, CamK needs to output the character
without noticeable latency. According to Section 4, in order
to output a character, we need to capture images, track fin-
gertips, and finally detect and locate the keystroke. The
large time cost in image processing leads to large time
latency for text output. To solve this problem, we first pro-
file the time cost of each stage in Camk, and then introduce
four optimization techniques to reduce the time cost. Unless
otherwise specified, the frame rate is set to 30fps by default.

5.3.1 Time Cost in Different Stages

There are three main stages in CamK, i.e., capturing the
images, tracking the fingertips, and locating the keystroke.
The stages are respectively called ‘Cap-img’, ‘Tra-tip’ and
‘Loc-key’ for short. We frist set the image size to 640
 480
pixels which is supported by many smartphones, and then
measure the time cost of producing or processing one image
in each stage with a Samsung GT-I9100 smartphone (GT-
I9100 for short). According to the measurement, the time
cost in ‘Cap-img’, ‘Tra-tip’, ‘Loc-key’ is 99, 118, 787 ms,
respectively. Here, ‘Cap-img’ means the time for capturing
an image, ‘Tra-tip’ means the time for processing the image
to select the candidate fingertips, ‘Loc-key’ means the time
for processing an image to locate the keystroke. We repeats
the measurement for 500 times to get the average time cost.

According to Section 5.1, we need to capture/process
three images during a keystroke to guarantee the localiza-
tion accuracy. Thus we can estimate the minimal time Tk1 of
detecting and locating a keystroke with Eq. (5). Obviously,
1,320 ms is a very large latency, thus more optimizations are
expected for CamK to realize real time processing

Tk1 ¼ ð99þ 118þ 99þ 118þ 99þ 787Þms ¼ 1320 ms: (5)

5.3.2 Adaptively Changing Image Sizes

As descried before, it is rather time-consuming to process
the image with 640
 480 pixels. Intuitively, if CamK oper-
ates on smaller images, it would reduce the time cost. How-
ever, to guarantee the keystroke localization accuracy, we
can not use a very small image. Therefore, we adaptively
adopts different sizes of images for processing, as shown in
Fig. 9. We use smaller images to track the fingertips during
two keystrokes and use larger images to locate the detected
keystroke. Based on extensive experiments, we set the size
of the small image to be 120
 90 pixels, while the large

image size is 480*360 pixels. As shown in Fig. 9, when a key-
stroke will happen, CamK adaptively changes frame i to be a
large image (i.e., 480*360 pixels). After that, CamK changes
the following frames to small images (i.e., 120*90 pixels) until
the next keystroke is detected. The time cost in ‘Cap-img
(120*90 pixels)’, ‘Cap-img (480*360 pixels)’ ‘Tra-tip (120*90
pixels)’, ‘Loc-key (480*360 pixels)’ is 32, 75, 9, 631 ms, respec-
tively. Then, we can estimate the minimal time cost Tk2 to
detect and locate a keystroke with Eq. (6). Here, Tk2 is 59.7
percent of Tk1. However, more optimizations are expected
for large-size image processing

Tk2 ¼ ð32þ 9þ 32þ 9þ 75þ 631Þms ¼ 788 ms: (6)

5.3.3 Optimizing Large-Size Image Processing

Based on Fig. 8, the keystroke is only related to a small area
of the large-size image. Thus we optimize CamK by only
processing the small area around the StrokeTip: the red
region of frame i shown in Fig. 9. Suppose the position of
the candidate fingertip in frame i� 1 (small image) is
Pi�1ðxc; ycÞ, then we scale the position to P

0
i�1ðx

0
c; y

0
cÞ (corre-

sponding position in large image), according to the ratio rsl
of the small image to the large image in width, i.e,
xc
x
0
c
¼ yc

y
0
c
¼ rsl. Here, rsl ¼ 120

480. Then, CamK only processes the

area S
0
c in frame i (large image) to reduce time cost, as

shown in Eq. (7). We set Dx ¼ 40, Dy ¼ 20 by default

S
0
c ¼ fPiðxi; yiÞ 2 S

0
cj jxi � x

0
cj � Dx; jyi � y

0
cj � Dyg: (7)

Currently, the processing time for the large-size image is
339 ms. As ‘Image’ row shown in Table 1, we estimate the
minimal time to detect and locate a keystroke with Eq. (8),
which is 37.6 percent of that in Eq. (5). However, the proc-
essing time 339 ms for the large-size image is still a little
high. If CamK works with a single thread, it may miss the
next keystroke, due to the large processing time. Thus,
CamK is expected to work with multiple threads in parallel

Tk3 ¼ ð32þ 9þ 32þ 9þ 75þ 339Þms ¼ 496 ms: (8)

5.3.4 Multi-Thread Processing

According the above conclusion, CamK uses three threads
to capture, detect and locate the keystrokes in parallel. As
shown in Fig. 10, the ‘Cap-img’ thread captures the images,
the ‘Tra-tip’ thread processes the small images for keystroke
detection, and the ‘Loc-key’ thread processes the large
image to locate the keystroke. In this way, CamK will not
miss the frames of next keystroke, because the ‘Cap-img’
thread does not stop taking images. As shown in Fig. 10,
Camk utilizes consecutive frames to determine the key-
stroke and also introduces the online calibration to improve
the performance.

TABLE 1
Time Cost in GT-I9100 Smartphone

(Image is Described in Pixels)

Cap-img
(120*90)

Cap-img
(480*360)

Tra-tip
(120*90)

Loc-key
(480*360)

Image 32 ms 75 ms 9 ms 339 ms
Reference 0.02 ms 0.02 ms 13 ms 106 ms

Fig. 9. Changing image sizes and focusing on the target area.

YIN ETAL.: CAMK: CAMERA-BASED KEYSTROKE DETECTION AND LOCALIZATION FOR SMALL MOBILE DEVICES 2243

By adopting multiple threads, we can estimate the mini-
mal time to detect and locate the keystroke with Eq. (9),
which is 36.4 percent of that in Eq. (5). Because the frame
rate is 30fps, the interval between two frames is 33 ms.
Therefore, we use 33 ms to replace 32 ms (‘Cap-img’ time).
In regard to the ‘Tra-tip’ time (9 ms), which is simultaneous
with the ‘Cap-img’ time of the next frame, thus not being
added in Eq. (9). When comparing with Eq. (8), Eq. (9) does
not reduce much processing time. This is mainly caused by
the time-consuming operations for writing and reading
each image. Therefore, it is better eliminate the operations
of writing/reading images

Tk4 ¼ ð33þ 33þ 75þ 339Þ ms ¼ 480 ms: (9)

5.3.5 Processing without Writing and Reading Images

To remove the operations of writing and reading images, we
store the image data captured by the camera in the RAM.
Then, CamK accesses the data based on pass-by-reference. It
indicates that different functions access the same image data.
In this way,we remove the operations of reading andwriting
images. The corresponding time cost in each stage is shown
in the ‘Reference’ row of Table 1. Here, the time cost for cap-
turing/storing the source data of a small image and a large
image is the same. This is because the limitation of hard-
wares, in preview mode, the size of the source data in each
frame is the same (e.g., 480
 360 pixels). If wewant to get the
image with size 120
 90 pixels, we will resize the image dur-
ing image processing.

In Table 1, the time cost of image processing includes the
time of reading image data and processing the image data.
When processing images with 120
 90 pixels, CamK only
needs to detect the candidate fingertips with hand segmen-
tation and fingertip discovery. When processing images
with 480
 360 pixels, CamK not only needs to detect the fin-
gertip, but also needs to select the candidate keys, calculate
the covered area of the pressed key and correlate the candi-
date fingertip with the pressed key to locate the keystroke.
Thus the time cost of processing the imagewith 120
 90 pixels
is smaller than that of the imagewith 480
 360 pixels. Accord-
ing to Table 1, we can estimate the minimal time to detect and
locate a keystroke with Eq. (10), which is only 15.5 percent of
that in Eq. (5). Here, 33 ms means the waiting time between
two images, because the maximum frame rate is 30fps. Unit
now, Tk is comparable to the duration of a keystroke, i.e., the
output time latency is usually within 50ms and below human
response time [7]

Tk ¼ ð33þ 33þ 33þ 106Þ ms ¼ 205 ms: (10)

5.4 Reduction of Power Consumption

To make Camk practical for small mobile devices, we need
to reduce the power consumption in CamK, especially in

image processing. Based on the definition of Camera.Parame-
ters [33] in Android APIs, the adjustable parameters of cam-
era are picture size, preview frame rate, preview size, and
camera view size (i.e., window size of camera).

Among the parameters, the picture size has no effect on
CamK. The preview frame rate and preview size (i.e., image
sizes) have already been optimized in Sections 5.1 and 5.3.
Therefore, we only observe how camera view size affect the
power consumption by a Monsoon power monitor [34].
When we respectively set the camera view size to 120*90,
240*180, 360*270, 480*360, 720*540, 960*720, 1200*900 pixels,
the corresponding power consumption is 1204.6, 1228.4,
1219.8, 1221.8, 1222.9, 1213.5, 1222.2 mW. The camera view
size has little effect on power consumption. In this paper,
the camera view size is set to 480*360 pixels by default.

6 EXTENSION: MULTI-TOUCH AND WORD

PREDICTION

To provide a better user experience, we add multi-touch to
allow the user to use a key combination, e.g., pressing ‘shift’
and ‘a’ at the same time. Besides, we introduce word predic-
tion to guess the possible word to be typed to improve the
text-input speed.

6.1 Multi-Touch Function

In Section 4.3, CamK determines one efficient keystroke.
However, considering the actual typing behavior, we may
use key combinations for special purposes. Take the Apple
Wireless Keyboard as an example, we can press ‘command’
and ‘c’ at the same time to “copy”. Therefore, we introduce
the multi-touch for CamK, to allow the user to use special
key combinations.

In CamK, we consider the case that user presses the key
combination by using left hand and right hand at the same
time, in order to eliminate ambiguity. In Fig. 11a, we show an
example of ambiguity, the 7th finger in right hand presses
the key ‘f’, while the 10th fingertip in the image is located in
‘shift’, it seems that the user aims to get the capital letter ‘F’. In
fact, the 3rd finger in left hand presses the key ‘command’,
i.e., the userwants to call the search function instead of getting
the letter ‘F’, as shown in Fig. 11b. Therefore, CamK considers
that the user uses key combination with two hands at the
same time, i.e., one hand correlates with one keystroke. With
the located keystroke in each hand,we verifywhether the two
keystrokes forms a special key combination. If it is true,
CamK calls the corresponding function. Otherwise, CamK
determines the only efficient keystroke based on Section 4.3.

6.2 Word Prediction

When the user has input one or more characters, CamK will
predict the word the user is probably going to type, by

Fig. 10. Multi-thread processing.
Fig. 11. Multi-touch function in CamK.

2244 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 17, NO. 10, OCTOBER 2018

using the common-word set and word frequencies [35] of
the typed words. In regard to the common-word set, we intro-
duce Nc most common words [36], which are sorted by fre-
quency of use in descending order. We use Ei; i 2 ½1; Nc� to
represent the priority level of the common word Wi,
Ei ¼ Nc�iþ1

Ncþ1 , Ei 2 ð0; 1Þ. In regard to word frequencies of the
typed words, we use Fj to represent the frequency of word
Wj typed by the user in CamK. Initially, Fj is set to zero.
Everytime the user types a word Wj, the frequency of Wj

increases by one. Whatever the larger priority level or the
larger word frequency, it indicates the word has a higher
probability to be typed. By matching the prefix Spk of word
Wk with that of common words, we get the top�mc candi-
date words lc1 with the highest Ei. Similarly, we get the
top�mu candidate words lc2 with the highest Fj. After that,
we merge lc1 and lc2 to get the candidate words in flc1 [lc2g.
We setNc ¼ 1000,mc ¼ mu ¼ 5 by default.

As shown in Fig. 12, when the user types ‘w’, we get lc1 as
fwith; we; what; who; wouldg, while lc2 is fword; words; weg.
Then, we merge the candidate words as fwith; we; what;
who; would; word; wordsg. By pressing the button corre-
sponding to the candidate word (e.g., “word”), the user can
omit the following keystrokes (e.g., ‘o’, ‘r’ and ‘d’). Then,
CamK can improve the input speed and reduce the compu-
tation/energy overhead.

7 PERFORMANCE EVALUATION

We implement CamK on smartphones running Android.
We use the layout of Apple Wireless Keyboard (AWK) as
the default keyboard layout, which is printed on a piece of
US Letter sized paper. Unless otherwise specified, we use
the Samsung GT-I9100 smartphone whose Android version

is 4.4.4, the frame rate is 15fps, the image size is 480
 360
pixels, and CamK works in the office. We first evaluate each
component of CamK. Then, we test the performance of
CamK in different environments. Finally, we recruit 9 par-
ticipants to use CamK and compare the performance of
CamK with other text-entry methods.

7.1 Localization Accuracy for Known Keystrokes

To verify whether CamK has obtained the optimal parame-
ters for image processing, we first measure the accuracy of
keystroke localization with a Samsung SM-N9109W smart-
phone, when CamK knows a keystroke is happening. The
user presses 59 keys (excluding the PC function keys: first
row, five keys in last row) on the paper keyboard. Specifi-
cally, we let the user press the sentences/words from the
standard MacKenzie set [37]. Besides, we introduce some
random characters to guarantee that each key will be
pressed with fifty times. We record the typing process with
a camera. When the occurrence of a keystroke is known, the
localization accuracy is close to 100 percent, as shown in
Fig. 13. It indicates that CamK can adaptively select suitable
values of the parameters used in image processing.

7.2 Accuracy in Different Environments

To verify whether CamK can detect and locate the keystroke
accurately, we conduct the experiments in four typical sce-
narios: an office environment (light’s color is close to white),
outdoors (basic/pure light), a coffee shop (light’s color is a
little bit closer to that of human skin), and a restaurant (light
is a bit dim). In each test, the user types words from the
MacKenzie set [37] and makes Nk ¼ 500 keystrokes. Sup-
pose CamK locates Na keystrokes correctly and treats Nf

non-keystrokes as keystrokes wrongly. We define the locali-
zation accuracy as pa ¼ Na

Nk
, while the false positive rate as

pf ¼ minðNf

Nk
; 1Þ. As shown in Fig. 14, CamK can achieve

high accuracy (close to or larger than 85 percent) with low
false positive rate (about 5 percent). In the office, the locali-
zation accuracy can achieve above 95 percent.

7.3 Effect of Frame Rate

As described in Section 5.1, the frame rate affects the number
of images �nf during a keystroke. If the value of �nf is too small,
CamKmaymiss the keystrokes. On the contrary,more frames

Fig. 12. Word prediction.

L

Fig. 13. Confusion matrix of 59 keys.

u

Fig. 14. Four scenarios.

YIN ETAL.: CAMK: CAMERA-BASED KEYSTROKE DETECTION AND LOCALIZATION FOR SMALL MOBILE DEVICES 2245

will increase the time latency. Based on Fig. 15, when �nf 	 3,
CamK has good performance.When �nf > 3, there is no obvi-
ous performance improvement. While considering the accu-
racy, false positive, and time latency,we set �nf ¼ 3.

Besides, we invited 5 users to test the duration Dt of a
keystroke. Dt represents the time when the StrokeTip is
located in the StrokeKey from the view of the camera. Based
on Fig. 16, Dt is usually larger than 150 ms. When �nf ¼ 3,
the frame rate is less than the maximum frame rate (30fps),
i.e., CamK can work under the frame rate limitation of the
smartphone. Therefore, �nf ¼ 3 is a suitable choice.

7.4 Effect of Image Size

At first, we choose a constant image size. Based on Fig. 17,
as the size of image increases, the performance of CamK
becomes better. When the size is smaller than 480
 360 pix-
els, CamK can not extract the keys correctly, the perfor-
mance is rather bad. When the size of image is 480
 360
pixels, the performance is good. Keeping increasing the
size does not bring obvious improvement. However,
increasing the image size will increase the time cost and
power consumption (measured by a Monsoon power

monitor [34]) for processing an image, as shown in
Fig. 18. Based on Section 5.3, CamK adopts both large
images and small images. To guarantee high accuracy
and low false positive rate, and reduce the time latency
and power consumption, the size of the large image is set
to 480
 360 pixels. In regard to small images, when the
image size decreases from 480
 360 to 120
 90 pixels,
CamK has high accuracy and low false positive rate, as
shown in Fig. 19. If the size of small images continuously
decreases, the accuracy decreases a lot, and the false posi-
tive rate increases a lot. However, decreasing the image
size means decreasing the time cost/power consumption,
as shown in Fig. 20. Combining Figs. 19 and 20, the size
of small image is set to 120
 90 pixels.

7.5 Time Latency and Power Consumption

Based on Fig. 20, the time cost for locating a keystroke is
about 200 ms, which is comparable to the duration of a key-
stroke, as shown in Fig. 16. Thus CamK can output the text
without noticeable time latency. The time latency is usually
within 50 ms, which is below the human response time [7].
In addition, we measure the power consumption of a

Fig. 15. Frames in a keystroke.

Fig. 16. Duration for a keystroke.

Fig. 17. Accuracy/fase positive versus image sizes.

Fig. 18. Processing one image versus image sizes.

Fig. 20. Locating a keystroke by changing sizes of small images.

Fig. 19. Changing sizes of small images.

2246 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 17, NO. 10, OCTOBER 2018

Samsung GT-I9100 smartphone in following states: (1) idle
with the screen on; (2) writing an email; (3) keeping the
camera on the preview mode (frame rate is 15fps); (4) run-
ning CamK (frame rate is 15fps) for text-entry. The power
consumption in each state is 505, 1118, 1189, 2159 mW. The
power consumption of CamK is a little high. However,
using a smartphone with better hardwares can change mul-
tiple threads into one thread for power saving.

7.6 Effect of Keyboards with Different Layouts,
Colors, and Textures

Different Layouts. We use three common keyboard layouts,
i.e., AWK [38], US ANSI [39], and UK ISO [39], to verify the
scalability of CamK. Each keyboard layout is scaled on a
piece of US Letter sized paper with similar inter-key distan-
ces. Based on Fig. 21, whatever the keyboard layout is, CamK
has good performance. It can achieve above 93 percent accu-
racy of keystroke localization, while the false positive rate is
usually less than 7 percent.

Different Colors/Textures. We use keyboards with different
colors and textures to test CamK. As show in Fig. 22, the
background of the keyboard is set to black, blue, green, red
and brown wood texture. When there is a large difference
between the colors of the keyboard and the skin, e.g., the
keyboard with black, blue and green background, the locali-
zation accuracy is usually larger than 90 percent, while the
false positive rate is lower than 5 percent. In regard to the
keyboard with red color or brown wood texture, the color
of keyboard is close to that of human skin, it is harder to
extract the contour of the fingertip from the keyboard, thus
the localization accuracy of CamK decreases.

7.7 Effect of Different Phones

In addition to the Samsung GT-I9100 smartphone, we also
test CamK in Samsung SM-G9009W (Android version 5.0)

and SM-N9109W (Android version 6.0.1) smartphones, in
terms of the accuracy of keystroke localization, the false posi-
tive rate of keystroke detection, time cost and power con-
sumption. According to Fig. 23, whatever the phone model
is, the keystroke localization accuracy can achieve above 90
percent, while the false positive rate is usually less than 6
percent. According to Fig. 24, which shows the time cost of
capturing an image, processing a small-size image, process-
ing a large-size image in different phones, SM-G9009 and
SM-N9109W smartphone greatly reduce the time cost of the
same task. In regard to the total time of detecting and locat-
ing a keystroke, i.e., ‘Keystroke’ bar in Fig. 24, the time cost
in SM-G9009W and SM-N9109W smartphone are 54.3 and
58.6 percent of that in GT-I9100 smartphone, respectively. In
Fig. 25, we test power consumption in four states: (1) idle
with the screen on; (2) writing an email; (3) keeping the cam-
era in the preview mode (the preview size is 480
 360 pixels
and frame rate is 15fps); (4) running CamK (frame rate is
15pfs). Usually, the power consumption of CamK is a little
high, because we use the power-consuming camera module
and adopt multiple threads. In future, when the smartphone
is configuredwith better hardwares, we can change the three
threads into one thread to reduce power consumption.

7.8 Effect of Skin Colors

We invited four users with different skin tones to observe
how the skin color affects the performance of CamK. The
skin color of each user is represented with the color in
Fig. 26. Intuitively, if the skin color is closer to the color of
keys or the keyboard’s background, it will be more difficult
to extract the finger’s contour. However, even if the skin
color changes, CamK can still work. As shown Fig. 26, the

Fig. 22. Accuracy/fase positive versus keyboard colors.

Fig. 21. Accuracy/fase positive versus keyboard layouts.

Fig. 23. Accuracy/fase positive versus phone models.

Fig. 24. Time cost versus phone models.

YIN ETAL.: CAMK: CAMERA-BASED KEYSTROKE DETECTION AND LOCALIZATION FOR SMALL MOBILE DEVICES 2247

false positive rate is usually lower than 6.0 percent while the
localization accuracy is usually larger than 90.0 percent.

7.9 Working in Complex Environments

Keyboard-Device Distance. While considering the effect of the
camera’s view, we test the performance of CamK by changing
the distance between the keyboard and the device (Samsung
SM-N9109W smartphone). According to Fig. 27,when the dis-
tance is smaller than 17 cm, the keystroke localization accu-
racy is larger than 90 percent. If the distance keeps increasing,
the keys look smaller in the camera’s view, thus the small
deviation of the detected fingertip can lead to keystroke locali-
zation error, i.e., the performance of CamKdecreases.

Keyboard’s Displacement. To test whether CamK can toler-
ate the slight movement of the keyboard, we respectively
move the keyboard left, right, up, down with 5 and 8 mm.
According to Fig. 28, when the keyboard is moved within 5
mm, the keystroke accuracy is still larger than 90.0 percent.
However, when the keyboard is moved with a large dis-
tance (e.g., 8 mm), CamK may locate the keystroke wrongly.
When moving the keyboard down with 8 mm, the keystroke
localization accuracy drops to 63.8 percent.

Different Surfaces. To test CamK on different surfaces, we
respectively put the paper keyboard on a flat surface on a
desk, a matte surface on a windowsill, and a soft surface on
a sofa. According to Fig. 29, CamK can work well on flat
surface and matte surface. However, on the soft surface,
when the user presses a key, her/his fingertip will change
the location of the key, then CamK will wrongly match the
fingertip with another key originally located in this place,
thus the localization accuracy drops under 90.0 percent.

Dynamic Backgrounds. To test Camk in dynamic back-
grounds, we perform the tests in a room, on the metro

(subway train), and on a campus bus using a portable lap-
desk. When CamK works in a bus, the slowing down and
speeding up of the bus will lead to the movement of the
panel. When pressing a key, the moved panel will make the
finger be located in another key, leading to an error. When
CamK works in the environment with a steady moving
state, the keystroke localization accuracy is usually close to
or larger than 90 percent, as shown in Fig. 30.

8 USER STUDY

To verify the efficiency of CamK, we compare CamK with
the following three input methods: IBM style PC keyboard,
Android on-screen keyboard, and Swype keyboard [40],
which allows the user to slide a finger across the keys and
use the language mode to guess the word. We recruit 9 par-
ticipants (3 female and 6 male, m ¼ 24:4 years old) to test
the above input methods in the office. Each participant
types the same regular text sentences and random charac-
ters in each method. The regular text sentences are picked
from the standard MacKenzie set [7], [37]. The random char-
acters are randomly selected from the characters in the
AWK keyboard. Before using each keyboard, the user has
10 minutes to familiarize with it. After that, each user
respectively spends 10 minutes to type regular text and ran-
dom characters with each input method. In the experiments,
the participant deploys the system and presses the key
according to his/her habits. In the trails, the participants
can correct the erroneous input as they want. However, if
they do not find the mistake until several characters later,
they should ignore the mistake and continue the typing

Fig. 25. Power consumption versus phone models.

Fig. 26. Accuracy/fase positive versus skin colors.

Fig. 27. Accuracy/fase positive versus distance between keyboard and
smartphone.

Fig. 28. Accuracy/fase positive versus movements of keyboard.

2248 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 17, NO. 10, OCTOBER 2018

process. We use the input speed (characters per second) and
the error rate pe ¼ ð1� paÞ þ pf as metrics for comparison.

8.1 Typing without Word Prediction

Regular Text Input. Fig. 31 shows the input speed of each
user while inputting regular text. Each user achieves the
highest input speed when using the PC keyboard. In regard
to other virtual keyboards, CamK can achieve 1.25X typing
speedup, when compared to the on-screen keyboard. In
CamK, the user can type 1.5-2.5 characters per second.When
compared with UbiK [7], CamK improves the input speed
about 20 percent. Fig. 32 shows the error rate of eachmethod.
Usually, the error rate of CamK is between 5%� 9%, which is
comparable to that of UbiK (about 4%� 8%).

Random Character Input. Fig. 33 shows the input speed of
each user when inputting random characters, which contain
a lot of digits and punctuations. The input speed of CamK
is comparable to that of a PC keyboard. CamK can achieve
2.5X typing speedup, when compared with the on-screen
keyboard and Swype, which need to switch between

different screens to find letters, digits and punctuations.
When inputting random characters, UbiK [7] achieves about
2X typing speedup, compared to that of on-screen key-
boards. It implies that CamK can improve more input speed
compared to UbiK. Fig. 34 shows the error rate of each
method. The error rate in CamK (6%� 10%) is comparable
to that of UbiK [7] (about 4%� 10%).

8.2 Text Input with Word Prediction

Fig. 35 shows the input speed and error rate while using
word prediction, we average the experiment results of 9
users. As shown in Fig. 35a, when the number of common
words is 2,000, the input speed is increased by 13.4 percent,
when compared with that without word prediction. At the
same time, the error rate also decreases, because the user
presses less keys for the same amount of words. As shown in
Fig. 35b, when the number of common words is 2,000, the
error rate is decreased by 14.1 percent, when compared with
that without word prediction. In addition, as the typing time
increases, the number of candidate words from the typed
words will increase, the input speed increases (shown in
Fig. 35c), while the error rate decreases (shown in Fig. 35d).

Fig. 29. Accuracy/fase positive versus different surfaces.

Fig. 30. Accuracy/fase positive under moving environments.

Fig. 31. Input speed with regular text input.

Fig. 32. Error rate with regular text input.

Fig. 33. Input speed with random character input.

Fig. 34. Error rate with random character input.

YIN ETAL.: CAMK: CAMERA-BASED KEYSTROKE DETECTION AND LOCALIZATION FOR SMALL MOBILE DEVICES 2249

In the user study, we compare CamK with other three
input methods, i.e., PC keyboard, Android on-screen key-
board, Swype keyboard.When comparedwith PCkeyboards,
CamK is a little inferior than the PC keyboard, due to the lack
of the tactile feedback of pressing keys. However, unlike the
bulky PC keyboard, CamK only uses a portable paper key-
board. When compared with the on-screen keyboard and
Swype keyboard, CamK has better performance than these
two input methods in input speed, especially when the text
contains many digits and punctuations. In regard to UbiK
and our CamK, they have comparable performances in input
speed and error rate. However, UbiK requires the user to click
keys with their fingertips and nails, while CamK provides a
similar user experience to using PC keyboards.

9 DISCUSSION

Considering the effect of camera settings, environments and
diverse user behaviors, CamK still bears some limitations.
Field of view: We set the aspect ratio of the captured image to
4 : 3, which is supported by a lot of phones. In fact, if the
camera works with an aspect ratio of 16 : 9, it can capture
larger images in the same location. However, different
aspect ratios also mean different image sizes, which affect
the efficiency of image processing. In future, we will imple-
ment CamK by capturing images in different aspect ratios
and test the performance of CamK. White balance error:
CamK introduces a light training before typing, to tolerate
the effect of environments. In future, we aim to iteratively
adjust the extracted hand regions with the learned parame-
ters in previous rounds, to enhance the tolerance of white
balance errors. Typing postures: When the user puts the
hands on the keyboard and presses the key with slight
movements of fingertips, CamK may wrongly recognize the
StrokeTip or miss the keystroke. In future, we try to combine
the movements of multiple fingers to infer the keystroke.
Besides, we try to make a sound for a keystroke to provide a
feedback to the user in text entry.

10 CONCLUSION

In this paper, we propose CamK for inputting text into
small mobile devices. By using image processing techni-
ques, CamK can achieve above 95 percent accuracy for key-
stroke localization, with only 4.8 percent false positives.
Based on our experiment results, CamK can achieve 1.25X
typing speedup for regular text input and 2.5X for random
character input, when compared with on-screen keyboards.
Besides, we introduce word prediction to further improve
the input speed for regular text by 13.4 percent.

ACKNOWLEDGMENTS

This work is supported by the National Key R&D Program of
China under Grant No. 2017YFB1001801, National Natural
Science Foundation of China under Grant Nos. 61472185,
61321491, 61502224, and JiangSu Natural Science Foundation
under Grant No. BK20151390. This work is partially sup-
ported by the Collaborative Innovation Center of Novel
Software Technology and Industrialization. Qun Li was
supported in part by US National Science Foundation grant
CNS-1320453.

REFERENCES

[1] M. Fukumoto and Y. Tonomura, “Body coupled FingerRing:
Wireless wearable keyboard,” in Proc. ACM SIGCHI Conf. Human
Factors Comput. Syst., 1997, pp. 147–154.

[2] M.K€olsch andM. Turk, “Keyboardswithout keyboards: A survey of
virtual keyboards,” Univ.California, Santa Barbara, CA,USA,UCSB
Tech. Rep. 2002-21, Jul. 2002.

[3] K. A. Faraj, M.Mojahid, andN. Vigouroux, “BigKey: A virtual key-
board for mobile devices,” Human-Comput. Interaction, vol. 5612,
pp. 3–10, 2009.

[4] S. Oney, C. Harrison, A. Ogan, and J. Wiese, “ZoomBoard: A
diminutive qwerty soft keyboard using iterative zooming for
ultra-small devices,” in Proc. ACM SIGCHI Conf. Human Factors
Comput. Syst., 2013, pp. 2799–2802.

[5] C. Harrison, H. Benko, and A. D. Wilson, “OmniTouch: Wearable
multitouch interaction everywhere,” in Proc. ACM Symp. User
Interface Softw. Technol., 2011, pp. 441–450.

[6] C. Tomasi, A. Rafii, and I. Torunoglu, “Full-size projection keyboard
for handheld devices,” Commun. ACM, vol. 46, no. 7, pp. 70–75, 2003.

[7] J. Wang, K. Zhao, X. Zhang, and C. Peng, “Ubiquitous keyboard
for small mobile devices: Harnessing multipath fading for fine-
grained keystroke localization,” in Proc. ACM Annu. Int. Conf.
Mobile Syst. Appl. Serv., 2014, pp. 14–27.

[8] Z. Zhang, Y. Wu, Y. Shan, and S. Shafer, “Visual panel: Virtual
mouse, keyboard and 3D controllerwith an ordinary piece of paper,”
in Proc. ACMWorkshop Perceptive User Interfaces, 2001, pp. 1–8.

[9] Y. Adajania, J. Gosalia, A. Kanade, H. Mehta, and N. Shekokar,
“Virtual keyboard using shadow analysis,” in Proc. 3rd Int. Conf.
Emerging Trends Eng. Technol., 2010, pp. 163–165.

[10] Y. Yin, Q. Li, L. Xie, S. Yi, E. Novak, and S. Lu, “CamK: A camera-
based keyboard for small mobile devices,” in Proc. IEEE INFO-
COM, 2016, pp. 1–9.

[11] Y. S. Kim, B. S. Soh, and S.-G. Lee, “A new wearable input device:
Scurry,” IEEE Trans. Ind. Electron., vol. 52, no. 6, pp. 1490–1499,
Dec. 2005.

[12] V. R. Pratt, “Thumbcode: A device-independent digital sign
language.” 1998. [Online]. Available: http://boole.stanford.edu/
thumbcode/

[13] S. Nirjon, J. Gummeson, D. Gelb, and K. H. Kim, “TypingRing: A
wearable ring platform for text input,” in Proc. ACM Annu. Int.
Conf. Mobile Syst. Appl. Serv., May 2015, pp. 227–239.

[14] M. Goldstein and D. Chincholle, “The finger-joint gesture wear-
able keypad,” in Proc. 2nd Workshop Human Comput. Interaction
Mobile Devices, 1999, pp. 9–18.

[15] M. Funk, A. Sahami, N. Henze, and A. Schmidt, “Using a touch-
sensitive wristband for text entry on smart watches,” in Proc.
Extended Abstracts Human Factors Comput. Syst., 2014, pp. 2305–2310.

Fig. 35. Input speed and error rate with word prediction.

2250 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 17, NO. 10, OCTOBER 2018

http://boole.stanford.edu/thumbcode/
http://boole.stanford.edu/thumbcode/

[16] M. Goel, A. Jansen, T. Mandel, S. N. Patel, and J. O. Wobbrock,
“ContextType: Using hand posture information to improve
mobile touch screen text entry,” in Proc. ACM SIGCHI Conf.
Human Factors Comput. Syst., 2013, pp. 2795–2798.

[17] S. Kwon, D. Lee, and M. K. Chung, “Effect of key size and activa-
tion area on the performance of a regional error correction method
in a touch-screen qwerty keyboard,” Int. J. Ind. Ergonom., vol. 39,
no. 5, pp. 888–893, Sep. 2009.

[18] S. Zhai, et al., “ShapeWriter on the iPhone: From the laboratory to
the real world,” in Proc. ACM Extended Abstracts Human Factors
Comput. Syst., Apr. 2009, pp. 2667–2670.

[19] O. Schoenleben and A. Oulasvirta, “Sandwich keyboard: Fast ten-
finger typing on a mobile device with adaptive touch sensing on
the back side,” in Proc. ACM Int. Conf. Human-Comput. Interaction
Mobile Devices Serv., 2013, pp. 175–178.

[20] J. Hu, G. Li, X. Xie, Z. Lv, and Z. Wang, “Bare-fingers touch detec-
tion by the button’s distortion in a projector–camera system,”
IEEE Trans. Circuits Syst. Video Technol., vol. 24, no. 4, pp. 566–575,
Apr. 2014.

[21] H. Roeber, J. Bacus, and C. Tomasi, “Typing in thin air: The can-
esta projection keyboard - a new method of interaction with elec-
tronic devices,” in Proc. ACM Extended Abstracts Human Factors
Comput. Syst., 2003, pp. 712–713.

[22] T. Murase, A. Moteki, N. Ozawa, N. Hara, T. Nakai, and K. Fuji-
moto, “Gesture keyboard requiring only one camera,” in Proc.
ACM Symp. User Interface Softw. Technol., 2011, pp. 9–10.

[23] J. Sun, X. Jin, Y. Chen, J. Zhang, Y. Zhang, and R. Zhang,
“VISIBLE: Video-assisted keystroke inference from tablet backside
motion,” in Proc. Netw. Distrib. Syst. Security Symp., NDSS’16, 21–
24 Feb. 2016, San Diego, CA, USA, http://dx.doi.org/10.14722/
ndss.2016.23060

[24] S. Malik and J. Laszlo, “Visual touchpad: A two-handed gestural
input device,” in Proc. 6th Int. Conf. Multimodal Interfaces, 2004,
pp. 289–296.

[25] M. Hagara and J. Pucik, “Fingertip detection for virtual keyboard
based on camera,” in Proc. 23rd Int. Conf. Radioelektronika, 2013,
pp. 356–360.

[26] iPhone app: Paper keyboard, 2015. [Online]. Available: http://
augmentedappstudio.com/support.html

[27] I. S. MacKenzie and R. W. Soukoreff, “Text entry for mobile com-
puting: Models and methods, theory and practice,” Human–
Comput. Interaction, vol. 17, no. 2/3, pp. 147–198, 2002.

[28] C. Zhang, J. Tabor, J. Zhang, and X. Zhang, “Extending mobile
interaction through near-field visible light sensing,” in Proc. 21st
Annu. Int. Conf. Mobile Comput. Netw., 2015, pp. 345–357.

[29] R. Biswas and J. Sil, “An improved canny edge detection algo-
rithm based on type-2 fuzzy sets,” Procedia Technol., vol. 4,
pp. 820–824, 2012.

[30] S. A. Naji, R. Zainuddin, and H. A. Jalab, “Skin segmentation
based on multi pixel color clustering models,” Digit. Signal Pro-
cess., vol. 22, no. 6, pp. 933–940, 2012.

[31] N. Otsu, “A threshold selectionmethod from gray-level histograms,”
IEEE Trans. Syst.ManCybern., vol. 9, no. 1, pp. 62–66, Jan. 1979.

[32] R. M. Haralick, S. R. Sternberg, and X. Zhuang, “Image analysis
using mathematical morphology,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. PAMI-9, no. 4, pp. 532–550, Jul. 1987.

[33] Camera parameters, 2016. [Online]. Available: https://developer.
android.com/reference/android/hardware/Camera.Parameters.html

[34] Monsoon power monitor, 2017. [Online]. Available: http://www.
msoon.com/

[35] I. S. MacKenzie and X. Zhang, “Eye typing using word and letter
prediction and a fixation algorithm,” in Proc. Symp. Eye Tracking
Res. Appl., 2008, pp. 55–58.

[36] Word Frequency Data: Corpus of contemporary American
English, 2017. [Online]. Available: http://www.wordfrequency.
info/free.asp

[37] I. S. MacKenzie and R. W. Soukoreff, “Phrase sets for evaluating
text entry techniques,” in Proc. Extended Abstracts Human Factors
Comput. Syst., 2003, pp. 754–755.

[38] Apple wireless keyboard, 2017. [Online]. Available: http://www.
apple.com/us/search/magic-keyboard-us-english?src=serp

[39] Keyboard layout, 2017. [Online]. Available: https://en.wikipedia.
org/wiki/Keyboard_layout

[40] Swype, 2015. [Online]. Available: http://www.swype.com/

Yafeng Yin received the PhD degree in computer
science from Nanjing University, China, in 2017.
She is currently an assistant professor in the
Department of Computer Science and Technol-
ogy, Nanjing University. Her research interests
include human activity recognition, mobile sens-
ing, wearable computing, etc. She is a member of
the IEEE.

Qun Li received the PhD degree in computer
science from Dartmouth College. He is a profes-
sor in the Department of Computer Science,
College of William and Mary. His research inter-
ests include wireless networks, sensor networks,
RFID, and pervasive computing systems. He
received a US NSF Career Award in 2008. He is
a fellow of the IEEE.

Lei Xie received the BS and PhD degrees from
Nanjing University, China, in 2004 and 2010,
respectively, all in computer science. He is currently
an associate professor in the Department of Com-
puter Science and Technology, Nanjing University.
He has published more than 50 papers in the IEEE
Transactions on Mobile Computing, the IEEE/ACM
Transactions on Networking, the IEEE Transac-
tions on Parallel and Distributed Systems, the ACM
Transactions on Sensor Networks, ACM UbiComp,
ACMMobiHoc, IEEE INFOCOM, IEEE ICNP, IEEE
ICDCS, etc. He is amember of the IEEE.

Shanhe Yi is working toward the PhD degree in
computer science under the supervision of Prof.
Qun Li at the College of William and Mary. His
research interests include mobile/wearable com-
puting and edge computing, with the emphasis
on the usability, security and privacy of applica-
tions and systems.

Ed Novak is an assistant professor of computer
science at Franklin and Marshall College. His
research focus is in digital privacy and security on
mobile devices. Recently, he has been interested
in security and privacy in the new Internet of
Things (IoT) paradigm.

Sanglu Lu received the BS, MS, and PhD
degrees from Nanjing University, China, in 1992,
1995, and 1997, respectively, all in computer sci-
ence. She is currently a professor in the Depart-
ment of Computer Science and Technology,
Nanjing University. Her research interests include
distributed computing and pervasive computing.
She is a member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

YIN ETAL.: CAMK: CAMERA-BASED KEYSTROKE DETECTION AND LOCALIZATION FOR SMALL MOBILE DEVICES 2251

http://dx.doi.org/10.14722/ndss.2016.23060
http://dx.doi.org/10.14722/ndss.2016.23060
http://augmentedappstudio.com/support.html
http://augmentedappstudio.com/support.html
https://developer.android.com/reference/android/hardware/Camera.Parameters.html
https://developer.android.com/reference/android/hardware/Camera.Parameters.html
http://www.msoon.com/
http://www.msoon.com/
http://www.wordfrequency.info/free.asp
http://www.wordfrequency.info/free.asp
http://www.apple.com/us/search/magic-keyboard-us-english?src=serp
http://www.apple.com/us/search/magic-keyboard-us-english?src=serp
https://en.wikipedia.org/wiki/Keyboard_layout
https://en.wikipedia.org/wiki/Keyboard_layout
http://www.swype.com/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

