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Abstract With the rapid proliferation of RFID technolo-
gies, RFID has been introduced to the applications like
safety inspection and warehouse management. Convention-
ally a number of deployment rules are specified for these
applications. This paper studies a practically important
problem of rule checking over RFID tags, i.e., checking
whether the specified rules are satisfied according to the
RFID tags within the monitoring area. This rule checking
function may need to be executed frequently over a large
number of tags and therefore should be made efficient in
terms of execution time. Aiming to achieve time efficiency,
we respectively propose two protocols, CRCP and ECRCP.
CRCP works based on collision detection, while ECRCP
combines the collision detection and the logical features
of the rules. Simulation results indicate that our protocols
achieve much better performance than other solutions in
terms of time efficiency.

Keywords RFID · Rule checking · Algorithm design ·
Time-efficient · Optimization

1 Introduction

With the development of RFID technologies, RFID tags
have been widely deployed into a variety of applications.
Conventionally, an RFID system typically consists of one
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or several readers and a large number of tags. Each tag is
attached to a physical item and has a unique identification
(ID) describing the item. The reader recognizes the object
by identifying its attached tag.

Recently, RFID has been introduced to a number of
rule checking-based applications, e.g., safety inspection and
warehouse management. In these applications, a set of
rules are specified over the deployment of the items (tags),
which vary from application to application. For example, in
the chemical laboratory, as shown in Fig. 1a, when some
chemicals (eg. metal material and corrosive solution) come
together, the chemical reaction occurs, which may cause
an accident. Therefore, these objects should not be placed
together. In the warehouse management, the lighter and the
alcohol should not be close to each other in consideration
of safety, while the pillow core and the pillowcase should
be placed together, since they are matching products, as
shown in Fig. 1b. In order to check the rules over a spec-
ified area, the reader can reasonably adjust its power to a
certain level. The objective is to check whether the rules
are satisfied according to the detected information from tags
in the scanning area. The rule checking function may need
to be executed frequently over a large number of tags and
therefore should be made efficient in terms of execution
time. For example, the security checking in the airport, as
shown in Fig. 1c. A straightforward solution is to collect
all the tag IDs, and then check the rules one by one based
on the collected IDs. However, this approach is rather time-
consuming due to the large number of tags deployed in the
applications.

Based on the above understanding, it is essential to pro-
vide a time-efficient solution for these rule checking-based
applications. We note that conventionally the rules are only
related to the tags’ categories instead of the detail IDs, and
it is possible to quickly check the rules by exploring their
logical features. For example, if the alcohol is not detected
in the warehouse management, then the rule over the lighter
and the alcohol can be verified as satisfied immediately, no
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Fig. 1 Rule-checking based applications

matter whether the lighter exists. In regard to the tag identifi-
cation protocol, traditional slotted ALOHA-based solutions
always try to reduce the collision slots, without sufficiently
exploring the information from the collision slots. In this
paper, by effectively resolving the collision slots and lever-
aging the rules’ logical features for verification, we propose
efficient rule checking protocols based on the categories of
tags, without the need of identifying tags one by one. While
verifying all related rules in the applications, our protocols
can dramatically reduce the overall execution time for rule
checking.

We make the following contributions in this paper.

– We study a practically important problem of rule check-
ing over a large set of RFID tags, which is essential for a
number of RFID applications, such as safety inspection,
warehouse management, and so on.

– We propose a time-efficient protocol for rule checking
based on collision detection, which aims at sufficiently
exploring the information from the collision slots. Fur-
thermore, we propose an enhanced protocol which com-
bines the collision detection and the logical features of
the rules. By leveraging the rule’s logical property, the
enhanced protocol can effectively simplify the checking
process.

– To the best of our knowledge, this is the first theoretical
work to investigate the rule checking problem in RFID
systems. While leveraging the information of the physi-
cal layer and the application layer, our solution conducts
a cross-layer optimization to effectively achieve time
efficiency.

2 Related works

Previous research on RFID has focused on anti-collision
protocols, which can be categorized into tree-based pro-
tocols [1] and ALOHA-based ones [2]. In ALOHA-based
protocols, most of the existing work considers the colli-
sion slots unuseful and wastes the collision slots. Recent

research shows that, analog network coding can be used to
extract useful information from collision slots to improve
the RFID reading throughput [3]. In the collision slot, the
the signals from multiple tags exhibit small offsets, which
are sufficiently small for decoding the collision slot [4].
Besides, Manchester coding technology can be used in
RFID communications to detect the bit collision [5, 6]. In
[7], Manchester coding is used to decode the tag identifier
from the collision bits with the known mask. In [8], Manch-
ester coding is used to extract the information from collision
slots to enhance the efficiency of identifying the tags.

Instead of identifying all the tags, missing tag identifica-
tion only aims to find the missing tags [9, 10]. Opposite to
the purpose of finding missing tags, Zheng et al. propose a
two-phase approximation protocol for fast tag searching in
large-scale RFID systems [11]. Rather than identifying the
tags, the RFID cardinality estimation protocols count the
number of distinct tags [12, 13]. However, all the literature
does not research the problem of rule checking over RFID
tags.

Being different from the related work, our research
focuses on efficiently checking the rules based on the tags’
categories. We resolve the collision slots to verify the tags’
categories specified by the rules and leverage the rules’ log-
ical features for rule checking. In order to resolve the colli-
sion slots, we will use the bit collision detection technology
based on Manchester coding.

3 Preliminary

3.1 Frame slotted ALOHA protocol

Frame slotted ALOHA protocol (FSA) is a popular anti-
collision protocol for tag identification. In FSA, the reader
first broadcasts the request message and specifies the fol-
lowing frame size f . After receiving f , each tag selects
h(ID) mod f as its slot number. Here, h is a hash function,
ID is tag ID. If no tag responds in a slot (empty slot), the
reader closes the slot immediately. If only one tag replies in
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a slot (singleton slot), the reader successfully receives the
tag ID and sends an acknowledgement to the tag. The tag
will keep silent in the rest of the session. If multiple tags
respond in the same slot (collision slot), a collision occurs,
and the involved tags will be acknowledged to restart in the
next frame. The reader repeats the above process until no
tags respond.

3.2 Synchronization

As a popular ID-collection protocol conforming to EPC-
C1G2 standard, FSA discards the collision slot. However,
if the tags’ responses are synchronized in a slot, we can
resolve the collision slot to get the tags’ responses. Further-
more, if the bit-level synchronization is achieved, then each
bit of the responses can be utilized to resolve the collision
slot.

In RFID systems, each tag communicates with the reader
in a single hop way. The transmissions can be synchronized
by the reader’s signal [14]. According to EPC-C1G2 stan-
dard [15], the tags responding in the same slot can be syn-
chronized through QueryRep or QueryAdjust. Besides, the
effective scanning range in the passive RFID system is lim-
ited (eg. 5-6 meters). The time delay difference between tags
caused by the difference of their distances to the antenna
is less than 6m

3×108m/s
= 0.02μs. When a tag receives the

reader’s command, it will respond in a very short time.
When the rate from a tag to the reader is 53Kb/s, it takes
18.88μs for the tag to transmit one bit. The maximum time
delay difference is less than 0.02μs, which can be neglected
compared to 18.88μs. In regard to the physical-layer sig-
nals, the signals from multiple tags exhibit small offsets,
which are sufficiently small for decoding [4]. Therefore, we
consider that the tags responding in the same slot are syn-
chronized. Moreover, the tags has the probability to achieve
bit-level synchronization, which is essential to recover the
useful bits of the tags’ responses from the mixed signal. As
the tag’s manufacturing technology is improved, we believe
that a feasible bit-level synchronization can be achieved
with more precise clock synchronization.

3.3 Manchester coding

In RFID systems, each tag encodes the backscattered data
before sending it. In this paper, we use Manchester coding to
achieve bit collision detection. Manchester coding has been
used in Type B of ISO 18000-6 [16].

In Manchester code, a falling edge transition represents
1, a rising edge transition represents 0. The transitions can
be used to accurately detect the bit collision [5, 6, 8], as
shown in Fig. 2. When tag1 and tag2 transmit IDs to the
reader simultaneously in a slot, the falling edge transition
and the rising edge transition cancel each other out, leading

Fig. 2 Bit collision detection in Manchester code

to no transition in a received bit, such as bit3 and bit6. The
corresponding bit is a collision bit. If there are more than
two tags responding simultaneously in a slot, only all the
tags transmit ‘0’ (or ‘1’), the reader can recover the bit ‘0’
(or ‘1’). Otherwise, the reader detects a collision bit x. We
represent the conclusion as follows, 0 + ... + 0 = 0 (all
the tags send ‘0’), 1 + ... + 1 = 1 (all the tags send ‘1’),
0+ ...+ 1 = x (some tags send ‘0’ and some tags send ‘1’).
In order to decode the bits in a slot, current experimental
platforms like USRP can be used [17], which can achieve
the bit-level identification (0, 1, x).

4 Problem formulation

We assume that each tag has a category ID to denote the
tag’s category and the category ID is the prefix of tag
ID. In order to efficiently get the category IDs, we will
utilize the collision slots based on Manchester coding. With-
out loss of generality, we assume that a feasible bit-level
synchronization can be achieved, which can be used to
recover the category IDs from the mixed signal in a slot.
In our problem, we check the rules based on the tag’s cat-
egory ID. We use R = {R1, ..., Ri, ..., Rm} to represent
the rules. The category IDs in the rules are formulated as
C = {C1, ..., Cj , ..., Cn}. In real application, there often
exist some constraint rules in the categories. For example,
orange juice and apple juice both belong to fruit juice, it may
be enough to have any one of them in the warehouse. The
type of the relationship is called OR. While pillow core and
pillowcase should be put together, their relationship’s type
is called AND. The lighter and the alcohol should not be
close to each other for the sake of safety, their relationship’s
type is called EXCLUSIVE. Taking the actual situation into
consideration, we classify the rules into three basic types.

– OR: At least one category must exist. We represent the
rule as Ri = Cj ∨Ck . We list two categories here. Actu-
ally, there can be more categories in a rule. The rule’s
Boolean value B(Ri) is false (B(Ri) = 0) only when
both Cj and Ck are outside the scanning area, which are
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expressed as B(Cj ) = 0 and B(Ck) = 0. Otherwise,
B(Ri) is true (B(Ri) = 1).

– AND: All the categories must exist together. We rep-
resent the rule as Ri = Cj ∧ Ck . The rule’s Boolean
value B(Ri) = 1 only when both Cj and Ck are in the
scanning area, B(Cj ) = 1 and B(Ck) = 1. Otherwise,
B(Ri) = 0.

– EXCLUSIVE: The categories should not be put together.
We represent it as Ri = ¬(Cj ∧ Ck). It is essen-
tially the same as the AND rule in consideration of
logical relation. However, considering the actual situa-
tion in applications, we do not merge them. The rule’s
Boolean value B(Ri) = 0 only when B(Cj ) = 1 and
B(Ck) = 1. Otherwise, B(Ri) = 1.

However, if a rule is a hybrid rule, we can split it into
subrules until each subrule belongs to one of the basic types.
For example, a hybrid rule Ri = (Cj ∧Ck)∨ (Cu∨Cv). We
get the subrules, Cj ∧Ck and Cu ∨Cv . Then, B(Ri) can be
obtained from B(Cj ∧ Ck) and B(Cu ∨ Cv).

Due to the large number of tags and rules, it is essential
to propose a time-efficient solution for the rule checking-
based applications, which aims at minimizing the execution
time T for checking all the rules.

5 Baseline protocols

5.1 Frame slotted ALOHA based rule checking protocol
(ARCP)

ARCP collects all the tag IDs in the scanning area , as
described in Section 3.1. Then the reader extracts the cate-
gory IDs in the scanning area and checks the rules.

5.2 Polling based rule checking protocol (PRCP)

We call the categories in the rules as related categories.
PRCP checks the existence of related category IDs in the
scanning area by broadcasting them one by one. When a
tag’s category ID is equal to the reader’s request one, it
will give a short response. The reader gets a nonempty slot.
Otherwise, it gets an empty slot. When the polling process
terminates, the reader checks the rules based on the tags’
responses.

5.3 Bloom filter based rule checking protocol (BRCP)

BRCP uses the Bloom filter to inform the related categories
to respond. For the related tags in the scanning area, each
one uses k hash functions to select k slots to give a short
response. The reader gets the responses as a virtual Bloom
filter and obtains the wanted category IDs from the virtual

Bloom filter to check the rules. In [11], a similar protocol
CATS is proposed for fast tag searching in large-scale RFID
systems.

6 Collision detection based rule checking protocol

6.1 Motivation

Based on the above analysis, we propose a Collision detec-
tion based Rule Checking Protocol (CRCP). It focuses on
resolving the collision slots based on Manchester code,
which can be used for bit collision detection according to
Section 3.

In CRCP, if α categories {C1, C2, . . . , Cα} should select
the same slot to respond, the reader gets an α – collision
slot. We use M = ∑α

j=1 Mj to represent the mixed signal
of Mj . Mj and M are Manchester code of d bits. Mj is
the short term of Cj to reduce transmission time. If α = 2,
M1 = 100101, M2 = 010111, then M = ∑2

j=1 Mj =
100101 + 010111 = xx01x1. M is the expected code to
be received by the reader. The reader decodes Mj from M

by comparing the received code with the expected one. If
the received code Mr is 010111, the reader can confirm that
only C2 gives the response M2. Because the first bit in M is
x, while the first bit in Mr is 0. It indicates that C1 is outside
the scanning area, while C2 is in the area. After that, the
reader uses the decoded category IDs to check the rules.

6.2 Protocol overview

In CRCP, the reader sends the request by Bloom filter. It
selects k hash functions h1, h2, . . . , hk and c category IDs
C1, C2, . . . , Cc to construct the Bloom filter with length l,
as shown in Fig. 3. It maps each Cj into k bits at positions
h1(Cj ) mod l, h2(Cj ) mod l, . . ., hk(Cj ) mod l and sets
these bits to 1. When a tag receives the request, it checks
the corresponding k bits. Only all the bits are 1, it gives
response. See Fig. 3 for an example of k = 3, l = 16,

Fig. 3 Collision detection based rule checking protocol
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the reader uses hi(Cj ) mod 16 (i ∈ [1, 3], j ∈ [1, 5]) to
construct the Bloom filter. The tags in C1, C2, C3, C4, C5

pass the test and give responses, while the tags in C9 keep
silent. If a tag in Cj should give response in the following
frame with size f , it uses a hash function hr to select a slot
hr(Cj ) mod f . Then, it sends d bits Manchester code Mj .
Here, Mj = h(Cj ) mod (2d), h is a hash function.

Because the reader knows the related categories and the
hash functions, it can get the mapping relation of Cj and
Mj . When getting the responses, the reader checks whether
each bit in the slot can be recovered from the mixed sig-
nal. If the bits cannot be recovered, it means the number of
tags responding in the slot is too large. Then the reader puts
the corresponding category IDs into the new set C′, which
will be verified later. If the bits can be recovered success-
fully, then the reader resolves the collision slots, as shown in
Algorithm 1. In the frame received from tags, suppose that
the reader is able to get qi new category IDs Ci, Cj , . . . , Ck

by decoding an α – collision slot. The reader decodes the
collision slots one by one until it gets all the c related cate-
gory IDs in the frame or the frame terminates. Then, it
repeats the similar process. At last, the reader verify the
category IDs in C′ using probability pr . The reader broad-
casts an integer y = �pr × Y �, Y is a large constant. Then
the tag calculates the hash result hr(ID) mod Y , only if
hr(ID) mod Y ≤ y, the tag gives response. In this way,
there will be only a few number of tags (eg. 1) in one cate-
gory giving responses. Then, the reader can decode the
category IDs. When all the related category IDs are verified,
the reader will check the rules based on Section 4.

6.3 Resolving the collision slot

According to Algorithm 1, the critical problem of CRCP
is how to resolve the collision slots efficiently. In fact,
decoding Mj from M is like to solve the system of linear
equations. In an α – collision slot, α represents the number
of variables in an equation, while the length of Manchester
code d represents the number of equations. In order to
simplify the procedure of resolving the collision slot, we
compare each bit in the expected code M with the corre-
sponding bit in received code Mr to decode Mj , as shown
in Algorithm 2.

In Algorithm 2, null means an empty slot. M(i)

means the ith bit in the Manchester code M . Mr(i) and
M1(i),M2(i), . . . ,Mα(i) are defined in the same way.
Based on the description in Section 3, M(i) equals 0 ,1 or x.
It is produced as follows, M(i) = ∑n0

j=0 0+∑n1
j=1 1. n0 and

n1 respectively represent the number of Mj(i) (j ∈ [1, α])
equivalent to 0 and 1 in the slot. Before the reader decodes
the category IDs in the ith bit, it will use the known set
{B(Cj )} to update M(i). If B(Cj ) = 0, the reader removes
Mj from M and updates M(i), n0, n1, α. If the expected

Algorithm 1 CRCP: Reader Side

bit M(i) = x, while the received bit Mr(i) = 0, then
the category Cj with the corresponding bit equivalent to
1 is outside the scanning area, B(Cj ) = 0. Besides, if
n0 = 1, the category Cj with corresponding bit equivalent
to 0 must in the scanning area, B(Cj ) = 1. If M(i) = x
and Mr(i) = 1, we can get the conclusion in the same way.
However, if the expected bit M(i) = x = 0 + ∑α−1

j=1 1 and
the received bit Mr(i) = x, then the category Cj with cor-
responding bit equivalent to 0 gives response, B(Cj ) = 1.
If M(i) = x = 1 + ∑α−1

j=1 0 and Mr(i) = x, we can get

Algorithm 2 Resolving an α – collision slot
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Table 1 An example for
resolving a collision slot with
α = 4

Step 1 2 3 4

Expected Mj set M1,M2, M3,M4 M1,M2, M3,M4 M1,M2, M3 M1,M2, M3

Expected code xxxxxx xxxxxx xxxxxx xxxxxx

Received code x0xxxx x0xxxx x0xxxx x0xxxx

M1 100101 100101 100101
√

100101

M2 101010 101010 101010 101010
√

M3 001111
√

001111 001111 001111

M4 110011 110011 ×
B(Cj ) B(C3) = 1 B(C4) = 0 B(C1) = 1 B(C2) = 1

the conclusion in the same way. The reader repeats the sim-
ilar process until it decodes all the α category IDs or it has
repeated d times.

We give an example in Table 1, the expected Manchester
code M is composed of {M1,M2,M3,M4}, the received
code Mr = x0xxxx. M = xxxxxx, M(1) = x = 0 +∑3

j=1 1, only M3(1) = 0. Besides, M(1) = Mr(1) = x. It
indicates M3 must give the response. Therefore, B(C3) = 1.
We can get B(C4) = 0 in the same way. Then, the reader
removes C4 and updates the third bit in M . M(3) = 0+ 1+
1 = x, n0 = 1, n1 = 2, M is composed of {M1,M2,M3},
α = 3. It repeats the similar process and gets B(C1) = 1,
B(C2) = 1.

6.4 Performance analysis

In CRCP, the reader uses k hash functions and c category
IDs to construct the Bloom filter with length l. If we require
that the false positive probability is less than ε, we get the

optimal value of l as l =
⌈ −ln(ε)·c

ln(2)·ln(2)
⌉

.

In each α − collision slot, the tag gives responses with d

bits. We use ᾱ and p̄d represent the average value of α and
pd , respectively. τ0 denotes the waiting time between any
two consecutive transmissions, and τbit denotes the time for
a tag to transmitonebit.Without lossofgenerality,wesetτ0 =
302μs, τbit = 18.88μs, pc = 1

2 . Besides, ᾱ should be a small
number(such as 2, 3, or 4) [3], considering the actual situ-
ation. Therefore, ᾱ is limited to [1, 4]. We get the optimal
value of ᾱ is ᾱ∗ = 4, the corresponding optimal value of d
is d∗ = 7. We set ᾱ = ᾱ∗, d = d∗, the frame size f = c

ᾱ
=

c
ᾱ∗ . More detail information of performance analysis can be
found in the conference version of this paper [18].

7 Enhanced collision detection based rule checking
protocol

7.1 Motivation

CRCP mainly focuses on verifying all the related category
IDs in the scanning area while ignoring the rule’s logical

feature. In this section, we propose an Enhanced Collision
detection based Rule Checking Protocol (ECRCP) in con-
sideration of the rule’s logical property. In fact, in the OR
rule, if any category exists, the rule’s Boolean value is true.
In the AND rule, if any category is out of the scanning
area, the rule’s Boolean value is false. In the EXCLUSIVE
rule, if any category is out of the scanning area, the rule’s
Boolean value is true. In regard to a hybrid rule, it can be
determined by its subrule’s Boolean value in a similar way.
Therefore, when the reader gets a part of the category IDs, it
can check the correlated rules. Then it only needs to check
the remaining categories in the unverified rules.

7.2 Protocol description

7.2.1 Estimating the tag size

In CRCP, the reader sends the request message to tags
based on Bloom filter, while ignoring the effect of tag size.
When the tag size in the scanning area is much smaller
than the number of related categories, CRCP is rather time-
consuming. Thus ECRCP uses the average run based tag
estimation (ART) scheme [13] to estimate the tag size. If the
ratio ρ of tag size to the number of related categories is less
than the threshold ρ∗, the reader will use APCR to check
the rules. Otherwise, the reader uses the Bloom filter to
inform the related categories to give responses and verifies
the categories, as described in the following subsections.

7.2.2 Finding the popular category

Based on Section 4, a related category may exist in serval
rules. We use frequency fj to describe the number of times
that Cj appears in different rules. If Cj appears in a differ-
ent rule, fj only adds one to its original value, no matter
how many times Cj appears in this rule. For example, in the
rule Ri = (Cj ∧Ck)∨(Cj ∨Cu), fj , fk , fu respectively add
one. Obviously, fj ∈ [1, m], m is the number of rules. If a
category Cj has a larger value of fj , it means that the cate-
gory affects more rules’ Boolean values. ECRCP first finds
the unverified popular category ID with the largest value
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of fj from the unverified rules. If several categories have
the same values of fj , the reader randomly chooses one of
them as the popular category. Then, it updates the frequency
of each unverified related category in the remaining rules
by eliminating the selected rules, which contain the popular
category, as shown in Algorithm 3.

Algorithm 3 ECRCP: Reader Side

7.2.3 Checking the rules

When the reader first selects the popular category ID C∗
j ,

it adds C∗
j into the set {C∗}. Then, it updates fj of each

unverified category Cj in the unchecked rules. The reader
selects the new popular category, which has the same fre-
quency with the the former popular category, adding it into
{C∗}. It repeats the above process until no category can be
added into {C∗}. The reader uses {C∗} to produce the Bloom
filter, as shown in Algorithm 3. When the reader gets the
responses from the tags, it will resolve the category IDs like
CRCP. Then, it checks the correlated rules. After that, the
reader will only check the remaining related categories in
the unverified rules. It repeats the similar process until all
the rules are checked.

In order to describe the process well, we provide an
example. We assume that R1 = C1 ∨ C2, R2 = C1 ∧ C3,
R3 = (C4 ∧C5)∨ (C4 ∧C6), R4 = ¬(C6 ∧C7). Firstly, the
reader gets f1 = 2, f2 = 1, f3 = 1, f4 = 1, f5 = 1, f6 = 2,
f7 = 1. C1 and C6 have the largest frequency value. It ran-
domly selects C1 as the popular category, {C∗} = {C1}. The
value of frequency in {C∗} is f ∗

j = f1 = 2. Then, it updates
fj of each unverified category in the remaining unselected
rules {R3, R4}, f4 = 1, f5 = 1, f6 = 2, f7 = 1. Obviously,
C6 is the popular category and f6 = f ∗

j , {C∗} = {C1, C6}.

At this time, all the unverified rules are selected. The reader
verifies C1 and C6 like CRCP. If the reader gets B(C1) = 1,
B(C6) = 0, it can immediately conclude that B(R1) = 1,
B(R4) = 1. After that, the reader only needs to verify the
undetermined categories C3, C4, C5 in the unverified rules
R2, R3, while ignoring other categories. Obviously, ECRCP
only needs to verify a part of the related categories instead
of all of them.

8 Performance evaluation

We evaluate the performance of our proposed protocols by
comparing them with the baseline protocols. We use the
overall execution time as the performance metric.

8.1 Experiment setting

We use the following parameters [14] to configure the simu-
lation: tag ID is 96 bits long. It takes 37.76μs for the
reader to transmit one bit. Any two consecutive transmis-
sions are separated by a waiting time τ0 = 302μs. It takes
18.88μs for a tag to transmit one bit. If the tag transmits
d bits to the reader, the transmission time of the slot is
(302+18.88×d)μs. It needs 321μs for the reader to detect
an empty slot. In PRCP and BRCP, the tag can transmit
one-bit information to announce its presence. The slot is
about 321μs. The number of tags in the interrogation region
(three-dimensional physical space) is set to 5000 at most.
Unless otherwise specified, we set the length of category
ID to 32bits, the number of tags to 3000 and the number of
rules to 300 by default. The false positive probability is set
to 1 × 10−4. Under the same simulation setting, we average
the results over 100 trials.

8.2 Optimal values of ᾱ and d

Based on Fig. 4, when ᾱ approaches to 4 and d approaches
to 7, the execution time decreases. When ᾱ is too small (ᾱ =

Fig. 4 Optimal values of ᾱ and d
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Fig. 5 Execution time under different value of ratios

2, 3), the kinds of category IDs in the slot are small and
collision slots cannot be fully utilized. If ᾱ is too large, the
collision slots are difficult to be decoded, which wastes a lot
of time. Therefore, the optimal values of ᾱ and d are ᾱ = 4
and d = 7, which are not relevant to the length of category
ID, the number of rules or tags, and are used in the following
experiments.

8.3 Threshold value ρ∗

Figure 5 shows the execution time of each protocol while
varying the ratio of ρ. ECRCP-No estimation means that
ECRCP does not estimate the tag size and works in the way
described in Section 7.2.2. In Fig. 5, when ρ ≤ 0.25, ARCP
achieves the best performance. This is because the tag size
in the scanning area is much smaller than the number of
related categories. In regard to ρ, it is not relevant to the
length of category ID, the number of rules or tags. It only
concentrates on the ratio of tag size to the number of related
categories. Therefore, we set the threshold of the ratio to
ρ∗ = 0.25. In our proposed ECRCP, if ρ ≤ ρ∗, ECRCP
works as ARCP to check the rules. Otherwise, it works in
the way described in Section 7.2.2.

Fig. 6 Execution time under different length of Cj

Fig. 7 Execution time under different number of tags in scanning area

8.4 Execution time comparison

Figures 6, 7 and 8 shows the execution time, CRCP and
ECRCP have better performances, and ECRCP achieves the
highest time efficiency. In Fig. 6, when the length of Cj is
64 bits, the execution time of ECRCP is about 0.5 seconds,
which is 3 % of the time required by ARCP. The perfor-
mance of ECRCP is unrelated to the length of category ID.
In Fig. 7, when the number of tags is 5000, the execution
time of ECRCP is about 0.5 seconds, which is 1.8 % of the
time required by ARCP. The number of tags has no effect
on ECRCP, because ECRCP focuses on the categories in the
rules instead of those in the scanning area. In Fig. 8, when
the number of rules is 500, the execution time of ECRCP is
about 0.8 seconds, which is 3.1 % of the time required by
BRCP. This is because ECRCP not only resolves the col-
lision slot but also leverages the rule’s logical feature. In
Fig. 9, when the number of rules is 50, ECRCP only verifies
21 % of the related category IDs.

Figures 10 and 11 provide some fine-grained analysis
about the efficiency of the protocols. Figure 10 illustrates
the utilization ratio of the responses slots. CRCP and
ECRCP have higher utilization ratio of responses slots than
the baseline ones, because CRCP and ECRCP resolve the

Fig. 8 Execution time under different number of rules
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Fig. 9 Number of verified category IDs under different number of
rules

collision slots to get more category IDs. Besides, Fig. 11
shows that ECRCP only needs about 1.7 verified related
categories to check a rule on average, which is only 21 % of
that needed in RRCP, BRCP, CRCP. This is because RCRCP
verifies the most popular categories, which affect more
rules’ Boolean values. ECRP only verifies part of the related
categories, which is consistent with Fig. 9. Therefore, it
achieves the best performance.

8.5 Accuracy of checking all the rules

Figure 12 illustrates the accuracies of checking all the rules.
The accuracies of ARCP and PRCP are higher than those
of BRCP, CRCP and ECRCP. Because BRCP, CRCP and
ECRCP use the Bloom filter, which has the probability of
false positive. It can result in decoding the category IDs
wrongly, leading to wrong result of the correlated rule.
However, the accuracy of 96 % can be achieved by CRCP
and ECRCP, which is high enough in many applications.
Furthermore, the accuracy of 98 % can be achieved by
ECRCP. When the number of rules is 300, the accuracy of
ECRCP is 99.5 %. If a higher accuracy is needed, we can

Fig. 10 Average Number of category IDs verified in a response slot

Fig. 11 Average Number of verified category IDs used to check a rule

properly adjust the length of the Bloom filter and the num-
ber of hash functions used in the Bloom filter to meet the
requirement.

9 Discussion

Bit-level collision detection is important to CRCP and
ECRCP. While considering the realistic environments,
detecting a collision bit can be affected by the capture effect,
channel error, etc.

– Capture Effect: When tag1 sends bit ’0’ and tag2 sends
bit ’1’ simultaneously, the expected mixed result is a
collision bit x. However, if the signal strength of tag1 is
much more strong than that of tag2, the reader is likely
to get bit ’0’, capture effect occurs. At this time, CRCP
and ECRCP may consider that tag2 is missing, leading
to an error.

Aiming to relieve capture effect, we can check the
rules in a mobile way to change the distance between
the tags and the antenna, which affects the tag’s signal
strength. If a tag can be detected at least one time, then
the reader considers that it exists. Moreover, in our pro-
posed protocols CRCP and ECRCP, there may be more

Fig. 12 Accuracy under different number of rules
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than one tag in category i giving response in a slot. It
will further reduce the capture effect, because the exis-
tence of a category is more easily to be detected than
the existence of a tag.

– Channel Error: Channel error may corrupt the sig-
nal transmitted by a tag. The problem is common to
all RFID reading protocols. Therefore, the RFID tag
usually keeps transmitting its ID until it receives the
acknowledgement from the reader. In our proposed pro-
tocols CRCP and ECRCP, only the bits of a slot can be
recovered from the signal, the reader will resolve the
collision slot, as shown in Algorithm 1. Otherwise, the
tags mapping to this slot will reply in the next frame, in
order to reduce the effect of channel error.

While considering the issues like capture effect, chan-
nel error, etc, there may be some potential inaccuracy of
our protocols CRCP and ECRCP. However, by adopting
the techniques described above, our protocols can work
efficiently and reduce the effect caused by realistic envi-
ronments in a degree. In future, we will provide more
improvements to CRCP and ECRCP, in order to solve the
problems better.

10 Conclusion

In this paper, we investigate the rule checking problem in
RFID systems. We present two efficient protocols, CRCP
and ECRCP. CRCP resolves the collision slots, while
ECRCP further combines the collision detection and the
rules’ logical features to achieve time efficiency. Simu-
lation results show that CRCP and ECRCP have better
performance than the baseline protocols. Besides, ECRCP
outperforms all the other solutions.
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