
GRAW+: A Two-View Graph Propagation Method With
Word Coupling for Readability Assessment

Zhiwei Jiang
State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, 210023, China.
E-mail: jiangzhiwei@outlook.com

Qing Gu
State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, 210023, China.
E-mail: guq@nju.edu.cn

Yafeng Yin
State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, 210023, China.
E-mail: yafeng@nju.edu.cn

Jianxiang Wang
State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, 210023, China.
E-mail: wjxnju@outlook.com

Daoxu Chen
State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, 210023, China.
E-mail: cdx@nju.edu.cn

Existing methods for readability assessment usually con-
struct inductive classification models to assess the readabil-
ity of singular text documents based on extracted features,
which have been demonstrated to be effective. However,
they rarely make use of the interrelationship among docu-
ments on readability, which can help increase the accuracy
of readability assessment. In this article, we adopt a graph-
based classification method to model and utilize the relation-
ship among documents using the coupled bag-of-words
model. We propose a word coupling method to build the
coupled bag-of-words model by estimating the correlation
between words on reading difficulty. In addition, we propose
a two-view graph propagation method to make use of both
the coupled bag-of-words model and the linguistic features.
Our method employs a graph merging operation to combine
graphs built according to different views, and improves the
label propagation by incorporating the ordinal relation
among reading levels. Experiments were conducted on both
English and Chinese data sets, and the results demonstrate
both effectiveness and potential of the method.

Introduction

Readability assessment evaluates the reading difficulties
of text documents, which are normally represented as dis-
crete reading levels. Automatic readability assessment is a
challenging task, which has attracted researchers’ attention
from the beginning of the last century (Collins-Thompson,
2014). Traditionally, it can be used by educationists to
choose appropriate reading materials for students of differ-
ent education or grade levels. In modern times, it can be
used by web search engines to do personalized searches
based on web users’ educational backgrounds.

Existing methods for readability assessment usually con-
centrate on feature engineering and then applying inductive
classification models to utilize the features. In the early
stages, researchers proposed readability formulas to mea-
sure the readability of texts (Zakaluk & Samuels, 1988).
These formulas are usually attained by linear regression on
several easy-to-compute text features relevant to reading
difficulty. Recently, by employing machine-learning tech-
niques, classification-based methods have been proposed and
demonstrated to be more effective than readability formulas
(Benjamin, 2012; Collins-Thompson, 2014). These methods
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combine the rich representation of texts with sophisticated
prediction models.

Most current methods assess the readability of text doc-
uments singularly, and ignore the interrelationship among
documents on readability, which can be useful in assessing
the readability of documents based on the labeled ones.
For example, two documents can be of the same reading
level, if they consist of words that have similar reading dif-
ficulty. Hence, we propose a graph propagation method for
readability assessment, which can model and utilize the
interrelationship among text documents.

To measure the relationship among documents, we use the
bag-of-words (BoW) model, which is commonly used for text
classification and clustering (Huang, 2008; Sebastiani, 2002).
However, to measure the relationship on readability, the basic
BoW model requires improvements, since it ignores the fact
that different words may have similar reading difficulties.
Figure 1 illustrates the improved use of the BoW model for
readability assessment using a simple example. In Figure 1,
the left matrix is built from the basic BoW model for three
documents (that is, D1, D2, and D3) consisting of four tokens
(that is, school, law, syllabus, and decree). Among the three
documents, D1 and D2 are two relatively difficult documents
both containing two easy words (school or law) and two diffi-
cult words (syllabus or decree), while D3 is an easy document
that contains two easy words (school). By calculating the
cosine similarities based on the basic BoW model (the bottom
left subfigure), the result shows that D1 is more similar to D3
than to D2, which is inconsistent with their similarities on
reading difficulty.

To overcome the shortcoming of the basic BoW model,
we designed a word coupling method. As shown in
Figure 1, the word coupling method first measures the sim-
ilarities among words on reading difficulties (the word cou-
pling matrix). Then the method makes the words of similar
difficulties (for example, school and law) share their occur-
rence frequencies with each other (by matrix multiplica-
tion), which leads to the coupled BoW model (the coupled
BoW matrix). In this way, the documents will be similar
on readability if their words have similar distributions on
reading difficulties.

To build the coupled BoW model, the key point is to
construct the word coupling matrix. For this purpose, we
first estimate the occurrence distributions of words in sen-
tences of different reading difficulties, and then compute
their similarities on reading difficulty based on the
distributions.

Besides the coupled BoW model, the linguistic features
can also be adopted by our method. On the one hand, we
use the linguistic features as complementation of the
coupled BoW model to construct graphs from multiple
views. On the other, the linguistic features are used to rein-
force the label propagation algorithm by providing the
prior knowledge.

In this article, we propose a two-view graph propaga-
tion method with word coupling for readability assess-
ment. Our contributions are as follows (a preliminary
version of this work appeared in Jiang, Sun, Gu, Bai, &
Chen, 2015). (i) We apply the graph-based method for
readability assessment, which can make use of the interre-
lationship among documents to estimate their readability.
(ii) We propose the coupled BoW model, which can be
used to measure the similarity of documents on reading
difficulty. (iii) We propose a two-view graph building
strategy to make use of both the coupled BoW model and
the linguistic features. (iv) We propose a reinforced label
propagation algorithm, which can make use of the ordinal
relation among reading levels. Extensive experiments
were carried out on data sets of both English and Chinese.
Compared with the state-of-art methods, the results dem-
onstrate both effectiveness and the potential of our
method.

Background and Related Work

Readability Assessment

Research on automatic readability assessment has
spanned the last 70 years (Benjamin, 2012). Early research
mainly focused on the designing of readability formulas
(Zakaluk & Samuels, 1988). Many well-known readability
formulas have been developed, such as the SMOG formula

FIG. 1. A motivation example of the word coupling method. The left matrix is a basic BoW matrix. The central matrix is a word coupling matrix. The
right matrix is the coupled BoW matrix. [Color figure can be viewed at wileyonlinelibrary.com]
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(McLaughlin, 1969) and the FK formula (Kincaid, Fish-
burne, Rogers, & Chissom, 1975). A key observation in
these studies is that the vocabulary used in a document
usually determines its readability (Pitler & Nenkova,
2008). A general way of using the vocabulary is the statis-
tical language model (Collins-Thompson & Callan, 2004;
Kidwell, Lebanon, & Collins-Thompson, 2009). More
recently, researchers have explored complex linguistic fea-
tures combined with classification models to obtain robust
and effective readability prediction methods (Denning,
Pera, & Ng, 2016; Feng, Jansche, Huenerfauth, & Elhadad,
2010; Schwarm & Ostendorf, 2005). While most studies
are conducted for English, there are studies for other lan-
guages, such as French (François & Fairon, 2012), German
(Hancke, Vajjala, & Meurers, 2012), and Bangla (Sinha,
Dasgupta, & Basu, 2014). In addition, researchers have
used the representation learning techniques for readability
assessment (Cha, Gwon, & Kung, 2017; Tseng, Hung,
Sung, & Chen, 2016).

The Bag-of-Words Model

The BoW model has been widely used for document
classification owing to its simplicity and general applica-
bility. It constructs a feature space that contains all the
distinct words of a language (or text corpus). Tradition-
ally, it assumes that words are independent, while
recently, capturing the word coupling relationship has
attracted much attention (Cao, 2015). Billhardt, Borrajo,
and Maojo (2002) studied the coupling relationship based
on the co-occurrence of words in the same documents.
Kalogeratos and Likas (2012) generalized the relationship
by taking into account the distance among words in the
sentences of each document. Cheng, Miao, Wang, and
Cao (2013) estimated the co-occurrence of words by min-
ing the transitive properties. Inspired by these studies, this
article modifies the BoW model for readability assess-
ment, and provides the coupled BoW model incorporating
the co-occurrence of words in different levels of reading
difficulty.

Graph-Based Label Propagation

Graph-based label propagation is applied on a graph to
propagate class labels from labeled nodes to unlabeled
ones (Subramanya, Petrov, & Pereira, 2010). It has been
successfully applied in various applications, such as dictio-
nary construction (Kim, Verma, & Yeh, 2013), word seg-
mentation and tagging (Zeng, Wong, Chao, & Trancoso,
2013), and sentiment classification (Ponomareva & Thel-
wall, 2012). Typically, a graph-based label propagation
method consists of two main steps: graph construction and
label propagation. During the first step, some forms of
edge weight estimation and edge pruning are required to
build an efficient graph (Jebara, Wang, & Chang, 2009;
Ponomareva & Thelwall, 2012). In addition, nodes in the
graph can be heterogeneous; for example, both instance
nodes and class nodes can coexist in a birelational graph
(Jiang, 2011), and nodes (words) of English can be linked
to nodes (words) of the target language (Chinese) in a
bilingual graph (Gao, Wei, Li, Liu, & Zhou, 2015). During
the second step, propagation algorithms are required to
propagate the label distributions to all the nodes (Kim
et al., 2013; Subramanya et al., 2010) so that the classes of
unlabeled nodes can be predicted.

The Proposed Method

In this section, we first present the overview of the pro-
posed method (GRAW+). Then we describe two main
parts of the method in detail: feature representation and
readability classification.

An Overview of the Method

The framework of GRAW+ is depicted in Figure 2.
GRAW+ takes an auxiliary text corpus and a target docu-
ment set as inputs. The auxiliary text corpus contains unla-
beled sentences used to construct the word coupling
matrix. The target document set contains both labeled and
unlabeled documents on readability. The objective of
GRAW+ is to predict the reading levels of the unlabeled

FIG. 2. The framework of GRAW+. [Color figure can be viewed at wileyonlinelibrary.com]
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documents in the target set based on the labeled ones.
GRAW+ includes two main stages: feature representation
and readability classification.

During the first stage, the documents in the data set are
mapped into feature vectors from two distinct views: the
cBoW (coupled BoW) view and the linguistic view. From
the cBoW view, the coupled BoW model is required, and
from the linguistic view, suitable linguistic features can be
borrowed from previous studies. By representing docu-
ments from these two views, both word-level difficulty dis-
tribution and document-level readability features can be
measured, and hence provide extensive information for
readability assessment.

During the second stage, a two-view graph propagation
method is proposed for readability classification, which con-
sists of three main steps: graph construction, graph merging,
and label propagation. In the first step, both labeled and unla-
beled documents are used to build graphs, where each docu-
ment is represented by a node, and their similarities on
reading difficulty are represented by edge weights. In the sec-
ond step, the intra-view merging operation is used to merge
the homogeneous graphs within the same view, and the inter-
view merging operation is used to merge the heterogeneous
graphs from different views. In the third step, a label propa-
gation algorithm is designed on the merged graph.

The Coupled Bag-of-Words Model

To build the cBoW model, first we construct the word
coupling matrix. Then we transform the basic BoW model
to the coupled BoW model using the word coupling matrix.

Constructing the word coupling matrix. As stated before,
the word coupling matrix is constructed to represent the
similarities of word pairs on reading difficulty. For this
purpose, we assume the simple fact that easy words tend to
appear in easy sentences, while difficult words tend to
appear in difficult sentences. Hence, we can estimate the
reading difficulty of a word by its distributions of occur-
rence probabilities in sentences from different difficulty
levels. The difficulty distributions can then be used to esti-
mate the similarities among words on reading difficulty by

computing the distribution divergence. Since sentences
with labeled difficulty levels are hard to acquire, we use
unlabeled sentences instead, and label the sentences by
estimating their difficulty levels with heuristic functions.

Figure 3 presents the three steps required to construct
the word coupling matrix: per-sentence reading difficulty
estimation, per-word difficulty distribution estimation, and
word coupling matrix construction. In the first step, each
sentence in the text corpus is assigned a weak label, which
is a reading score computed in a heuristic function. In the
second step, based on the weak labels, the difficulty distri-
bution of each word is estimated, according to their distri-
butions of occurrences in these sentences. In the final step,
the similarities among words are calculated using the distri-
bution divergence.

Step 1: Per-sentence reading difficulty estimation.
The precise estimation of sentence-level readability is a
hard problem and has recently attracted the attention of
many researchers (Pilán, Volodina, & Johansson, 2014;
Schumacher, Eskenazi, Frishkoff, & Collins-Thompson,
2016; Vajjala & Meurers, 2014). For efficiency, we use
heuristic functions to make a rough estimation. Specifically,
we consider the linguistic features designed for readability
assessment that have been demonstrated to be effective in
previous studies (Feng et al., 2010; Schumacher et al.,
2016), and choose the most used linguistic features that can
be operated at the sentence level to build the heuristic func-
tions. In total, eight heuristic functions h 2 {len, ans, anc,
lv, art, ntr, pth, anp} corresponding to eight distinct fea-
tures from three aspects are used to compute the reading
score of a sentence, as shown in Table 1.

Let S denote the set of all the sentences ready for con-
structing the word coupling matrix. Given a sentence
s 2 S, its reading difficulty can be quantified as a reading
score r(s) = h(s) by using one of the eight functions. The
more difficult s is, the greater r(s) will be.

Considering that the reading score r(s) may be continu-
ous, we discretize r(s) into several difficulty levels. Let η
denote the predetermined number of difficulty levels, rhmax
and rhmin, respectively, denote the maximum and minimum

FIG. 3. The process of representing documents using the coupled bag-of-words model. [Color figure can be viewed at wileyonlinelibrary.com]
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reading score of all the sentences in S, where h refers to
one of the eight functions. To determine the difficulty level
lh(s) (lh(s) 2 [1, η]) of a sentence s, the range rhmin,r

h
max

� �
is

evenly divided into η intervals. lh(s) will be i, if the reading
score r(s) resides in the i-th interval. For each of the three
aspects, we compute one l*(s) for a sentence s by combin-
ing the heuristic functions using the following equations.

lsur sð Þ¼ max llen sð Þ,lans sð Þ,lanc sð Þ� �
llex sð Þ¼ max llv sð Þ,latr sð Þ,lntr sð Þ� � ð1Þ

lsyn sð Þ¼ max lpth sð Þ,lanp sð Þ� �

Step 2: Per-word difficulty distribution estimation.
The difficulty distribution of each word is computed based
on the sentence-level reading difficulty. Since each sentence
contains many words and each word may appear in many
sentences, we estimate the difficulty distributions of words
according to their distributions of occurrences in sentences.

Let V denote the set of all the words appearing in S, pt
denotes the difficulty distribution of a word (term) t2V. pt
is a vector containing η (that is, the number of difficulty
levels) values, the i-th part of which can be calculated by
Equation 2.

pt ið Þ¼ 1
nt
�
X
s2S

δ t2 sð Þ � δ l sð Þ¼ ið Þ ð2Þ

where nt refers to the number of sentences containing t.
The indicator function δ(x) returns 1 if x is true and
0 otherwise.

Step 3: Word coupling matrix construction.
Given the set of words V, a word coupling matrix is
defined as C2R Vj j× Vj j, the element of which reflects the
correlation between two words (that is, terms). The correla-
tion between each pair of words can be computed according
to the similarity measure of their difficulty distributions.

Given two words (terms) t1 and t2, whose difficulty dis-
tributions are pt1 and pt2 , respectively, we use a symmetric

version of Kullback–Leibler divergence (Kullback & Leibler,
1951) to measure their distribution difference, which aver-
ages the values of the divergence computed from both direc-
tions. The equation is:

cKL t1, t2ð Þ¼ 1
2
KL pt1kpt2ð Þ+KL pt2kpt1ð Þð Þ ð3Þ

where KLðp j qj Þ ¼P
i p ið Þ logp ið Þ

q ið Þ and i is the element

index. After that, the logistic function is applied to get the
normalized distribution similarity, that is:

sim t1, t2ð Þ¼ 2

1 + ecKL t1, t2ð Þ ð4Þ

Given a word ti, only λ other words with highest corre-
lation (similarity) are selected to build the neighbor set of
ti, denoted as N tið Þ. If a word tj is not selected (that is,
tj=2N tið Þ), the corresponding sim(ti, tj) will be assigned
0. After that, the word coupling matrix (C*) with sim(ti, tj),
as its elements are normalized along the rows so that the
sum of each row is 1. Based on three different l*(s), we
construct three distinct word coupling matrices Csur, Clex,
and Csyn.

While a large volume of vocabulary will make the con-
struction of the word coupling matrix time-consuming, we
provide a strategy to filter out less informative words based
on their distributions on reading difficulty. The filtering mea-
sure is the entropy of the words, which can be calculated by
Equation 5. By sorting the words ascendingly according to
entropy, the last α 2 [0, 1] proportion will be filtered out.

Ent tð Þ¼H ptð Þ¼ −
Xη
i¼1

pt ið Þ logpt ið Þ ð5Þ

Generating the Coupled Bag-Of-Words Model. In the
basic BoW model, words are treated as being independent
of each other, and the corresponding BoW matrix is sparse
and ignores the similarity among words on reading diffi-
culty. For readability assessment, the coupled BoW model
can be implemented by multiplying the word coupling
matrix and the basic BoW matrix, and the resulting
coupled BoW matrix will be dense and focus on similari-
ties on reading difficulty.

TABLE 1. Three aspects of estimating reading difficulty of sentences using heuristic functions.

Aspect Function Description

Surface len(s) the length of the sentence s.
ans(s) the average number of syllables (or strokes for Chinese) per word (or character for Chinese) in s.
anc(s) the average number of characters per word in s.

Lexical lv(s) the number of distinct types of POS, that is, part of speech, in s.
atr(s) the ratio of adjectives in s.
ntr(s) the ratio of nouns in s.

Syntactic pth(s) the height of the syntax parser tree of s.
anp(s) the average number of (noun, verb, and preposition) phrases in s.
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One of the popular schemes of the BoW model is TF-
IDF (Term Frequency and Inverse Document Frequency).
Given the set of documents D and the set of words V, the
TF-IDF matrix is defined as Mbow 2R Vj j× jDj, which can be
calculated based on the logarithmically scaled term (that is,
word) frequency (Salton & Buckley, 1988) as follows:

Mbow
t,d ¼ tft,d � idft,d ¼ 1 + logf t,dð Þð Þ � log 1 +

Dj j
djt2 df gj j

� �
ð6Þ

where f(t, d) is the number of times that a term (word) t 2
V occurs in a document d 2D.

By adopting the TF-IDF matrix Mbow from the basic
BoW model, the coupled TF-IDF matrix M* can be gener-
ated by the following equation:

M* ¼C* �Mbow ð7Þ

Technically, three coupled TF-IDF matrices Msur, Mlex,
and Msyn can be built according to the three word coupling
matrices C*, developed in the previous section.

The Linguistic Features

The readability of documents is influenced by many fac-
tors, such as vocabulary, composition, syntax, semantics,
and so on. Since vocabulary factors have been incorporated
in the cBoW model, we integrate the other three factors
into the linguistic view as complementation of the cBoW
view. From the linguistic view, we build Ml 2Rnl × jDj (nl
refers to the number of features) for the documents in D.
Based on the recent work on document-level readability
assessment (Feng et al., 2010; Jiang, Sun, Gu, & Chen,
2014; Vajjala & Meurers, 2012), we select three groups of
linguistic features: surface features, lexical features, and
syntactic features, which are described as follows. Since
our proposed method aims for language-independency, we
select mostly the language-independent features and add
some popular language-dependent features adapted from
English to Chinese.

Surface Features. Surface features are the kind of fea-
tures that can be directly acquired by counting the gram-
matical units in a document, such as the average number
of characters per word, syllables per word, and words per
sentence (Vajjala & Meurers, 2012). We adopt them in our
method and add extra features used in Jiang et al. (2014).
The extra features include the average number of polysyl-
labic words (for example, the number of syllables is greater
than 3) per sentence, the average number of difficult words
(for example, the number of characters is greater than 10)
per sentence, the ratio of distinct words (that is, without
repetition), and the ratio of unique words.

Lexical Features. Lexical features are relevant to the lexi-
cal types (for example, part of speech), which can be
acquired by lexical analysis. Vajjala and Meurers (2012)
employed lexical richness measures for readability assess-
ment, which include 15 SLA (Second Language Acquisi-
tion) measures and two extra designed measures. Jiang
et al. (2014) developed counterparts of all the measures for
Chinese documents. We adopt the two sets of lexical fea-
tures for both English and Chinese. In addition, we also
add the five features proposed by Feng et al. (2010) to
compensate for the missed lexical types.

Syntactic Features. Syntactic features are features that
are computed based on the syntactic structures of sentences
that may require the parse tree analysis. Following Vajjala
and Meurers (2012), we adopt features computed on units
of three levels: sentence, clause, and T-unit. In addition,
we add the features designed in Jiang et al. (2014), which
count the relative ratios of different types of parse tree
nodes and phrases (that is, subtrees). Examples include the
average number of noun phrases per sentence, the average
number of parse tree nodes per words, and the ratio of the
extra high tree.

Two-View Graph Propagation

Based on the cBoW and linguistic views, we propose a
two-view graph propagation method for readability classifi-
cation. While the general graph-based label propagation
(Zhu & Ghahramani, 2002) contains two steps (that is,
graph construction and label propagation), our method adds
an extra graph merging step to make use of multiple graphs.
In addition, since grade levels are in ordinal scale, we further
propose a reinforced label propagation algorithm.

Graph Construction. Given a feature representation
X 2 {Msur, Mlex, Msyn, Ml}, we can build a directed graph
G* to represent the interrelationship on readability among
the documents, where the node set D contains all the docu-
ments. Given the similarity function, we link nodedi 2D
to dj 2D with an edge of weight G*

i, j, defined as:

G*
i, j ¼

sim di,dj
� �

if dj 2K dið Þ
0 otherwise

(
ð8Þ

where K dið Þ is the set of k-nearest neighbors of di with
top-k similarities. The similarity function sim(di, dj) can be
defined by the Euclidean distance as follows:

sim di,dj
� �¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

v¼1 Xv, i−Xv, j
� �2q

+ ϵ
ð9Þ

where ϵ is a small constant to avoid zero denominators.
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Graph Merging. By constructing graphs from two views,
we get four graphs, where three graphs correspond to the
three coupled TF-IDF matrices (denoted Gsur, Glex, and
Gsyn, respectively), and one graph corresponds to the lin-
guistic features (denoted Gl). The former three graphs are
homogeneous, since they share the same view, while the
last graph is different. For the three homogeneous graphs,
we provide an intra-view homogeneous graph merging
strategy to merge them into one (denoted Gc). To combine
the graphs from both views, we provide an inter-view het-
erogeneous graph merging strategy to merge graph Gc and
graph Gl into the final graph Gcl.

Intra-view homogeneous graph merging. Given the
three graphs (that is, Gsur, Glex and Gsyn), where each node
has k neighbors, we merge them into the graph Gc where
each node still has k neighbors. The basic idea is keeping
the common edges while removing edges containing
redundant information, as shown in Figure 4. Given a node
v, firstly we reserve its neighbors which are common in all
three graphs. Secondly, for the candidate nodes, which are
neighbors of v in at least one graph, we select one by one
the node which possesses the least number of common
neighbors (that is, the nodes that are already selected in
Kc vð Þ). The objective is to keep the number of triangles in
Gc to a minimum. The edge weights of Gc are averaged on
the corresponding edges appeared in the three graphs.

Inter-view heterogeneous graph merging. Considering
that edges of either Gc or Gl describe the relationship of
documents on readability from a certain perspective, we
reserve all the edges (that is, some nodes will have >k
neighbors) and use the factor β to balance their weights on
the final graph Gcl. The following equation defines the
strategy:

Gcl
i, j ¼ βGc

i, j + 1−βð ÞGl
i, j ð10Þ

The parameter β 2 [0, 1] is used to specify the relative
importance of the two graphs. Clearly, the case of β = 0 or
1 reduces the graph to a single view.

Label propagation. Given a graph G constructed in pre-
vious sections, its nodes are divided into two sets: the

labeled set Dl ¼ d1,d2,� � �,dxf g and the unlabeled set
Du ¼ dx + 1,dx+ 2,� � �,dnf g. The goal of label propagation is
to propagate class labels from the labeled nodes (that is,
documents with known reading levels) to the entire graph.
We use a simplified label propagation algorithm presented
in Subramanya et al. (2010), which has been proved effec-
tive (Kim et al., 2013). The algorithm iteratively updates
the label distribution on a document node using the follow-
ing equation:

q ið Þ
d yð Þ¼ 1

κd
q0d yð Þδ d 2Dlð Þ +

X
v2K dð Þ

Gd,vq
i−1ð Þ
v yð Þ

0
@

1
A ð11Þ

At the left side of Equation 11, q ið Þ
d yð Þ is the afterward

probability of y (that is, the reading level y) on a node d at
the i-th iteration. At the right side, κd is the normalizing
constant to make sure the sum of the level probabilities is
1, and q0d yð Þ is the initial probability of y on d if d is ini-
tially labeled (1 if d is labeled as level y or 0 otherwise).
δ(x) is the indicator function. K dð Þ denotes the set of
neighbors of d. The iteration stops when the changes in

q ið Þ
d yð Þ for all the nodes and reading levels are small
enough (for example, less than e−3), or i exceeds a prede-
fined number (for example, greater than 30). For each unla-
beled document di, its predicted reading level is y if the
element qdi yð Þ is greatest in the latest label distribution qdi .

Reinforced label propagation. The above label propa-
gation algorithm (Subramanya et al., 2010) treats the class
labels as in nominal scale, and ignores the ordinal relation
among reading levels. We develop a reinforced label prop-
agation algorithm to utilize the ordinal relationship. Pre-
classification is required using the linguistic features,
which can provide extra information to amplify the edge
weights.

Let documents have m reading levels in ordinal scale.
Given the x labeled documents with reading levels {y1, � � �,
yx}, a preclassifier can be trained and the prelabels can then
be predicted for the unlabeled documents, denoted as
ŷx+ 1,� � �, ŷnf g. Thus, we have the a priori label of all the
documents {z1, � � �, zx, zx + 1, � � �, zn}, where zi = yi (i 2 {1,
� � �, x}) for labeled documents and zj ¼ ŷj (j 2 {x + 1, � � �, n})
for unlabeled documents.

Based on the a priori labels, we amplify the weights of
the edges which connect two nodes of similar a priori
labels. The reinforced label propagation iteratively updates
the label distribution on a document node using the follow-
ing enhanced equation:

q ið Þ
d yð Þ¼ 1

κd
q0d yð Þδ d 2Dlð Þ+

X
v2K dð Þ

G0
d,vq

i−1ð Þ
v yð Þ

0
@

1
A

G0
d,v ¼ m− zd −zvj jð ÞGd,v ð12ÞFIG. 4. Illustration of the intra-view homogeneous graph merging strat-

egy. [Color figure can be viewed at wileyonlinelibrary.com]
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where G
0
is a weighted graph the edge weights of which

are modified from Gd, v according to the difference in cur-
rent reading levels of their end nodes. For each unlabeled
document di, its final reading level is y if qdi yð Þ is greatest
in the final label distribution qdi .

Experiments

In this section, we conduct experiments on data sets of
both English and Chinese to investigate the following four
research questions:

RQ1: Whether the proposed method (that is, GRAW+)
outperforms the state-of-the-art methods for readability
assessment?

RQ2: What are the effects of the word coupling
matrix on the performance of the coupled bag-of-words
model?

RQ3: How effective is the two-view graph propagation
method, including the graph merging strategies and rein-
forced label propagation algorithm?

RQ4: Whether introducing the external text corpus can
improve the quality of the word coupling matrix?

Corpus and Performance Measures

To evaluate our proposed method, we used two data
sets. The first is CPT (Chinese primary textbook) (Jiang
et al., 2014), which contains Chinese documents of six
reading levels corresponding to six grades. The second is
ENCT (English New Concept textbook) (Jiang et al.,
2015), which contains English documents of four read-
ing levels. Both data sets (shown in Table 2) are built
from well-known textbooks where documents are orga-
nized into grades by credible educationists. For the docu-
ments in CPT, we use the ICTCLAS tool (Zhang, 2013;
Zhang, Yu, Xiong, & Liu, 2003) to do the word
segmentation.

We conducted experiments on both CPT and ENCT
using the hold-out validation, which randomly divides a
data set into labeled (training) and unlabeled (test) sets by
stratified sampling. The labeling proportion is varied to
investigate the performance of a method under different
circumstances. To reduce variability, under each case,
100 rounds of hold-out validation are performed, and the
validation results are averaged over all the rounds. To tune
the hyperparameters, we randomly choose one partition
from the training set as the development set. We chose the
precision (P), recall (R), and F1-measure (F1) as the per-
formance measures.

Comparisons to the State-of-the-Art Methods

To address RQ1, we implement the following readabil-
ity assessment methods and compare our method GRAW+
with them:

• SMOG (McLaughlin, 1969) and FK (Kincaid et al., 1975) are
two widely used readability formulas. We reserve their features
and refine the coefficients on both data sets to befit the reading
(grade) levels.

• SUM (Collins-Thompson & Callan, 2004) is a word-based
method, which trains one unigram model for each reading
level, and applies model smoothing among the reading levels.

• V&M (Vajjala & Meurers, 2012) is one of the current best
readability assessment methods for English, which adopts three
groups of features for classification. As majority of the features
are designed specifically for English, we run V&M on
ENCT only.

• Jiang (Jiang et al., 2014) is a readability assessment method for
Chinese. It adopts five groups of features and designs an ordi-
nal multiclass classification with voting for classification. We
run Jiang on CPT only.

• SG-NN is a word embedding-based readability assessment
method proposed by Tseng et al. (2016). In SG-NN, the repre-
sentation of a document is generated by adding up the word
embedding of all words in the document. The word embedding
model used is Skip-Gram. The classification model used is the
regularized neural network with one hidden layer.

• SG-KM-SVM is a word embedding-based readability assess-
ment method proposed by Cha et al. (2017). In SG-KM-SVM,
the representation of a document is generated by applying aver-
age pooling on the word embedding and cluster membership of
all words in the document. The word embedding model used is
Skip-Gram. The cluster membership is generated by K-means.
SVM (Support Vector Machine) is used to predict the reading
level of a document.

• SVM (Support Vector Machine) and LR (Logistic Regression)
are two classification models that have widely been used for
readability assessment in previous studies (Feng et al., 2010;
Jiang et al., 2014).

• TSVM (Transductive SVM) (Joachims, 1998) is a classical
transductive method, which has not been applied in readability
assessment. Since GRAW+ is also a transductive method, we
run TSVM here as a baseline.

• OLR (Ordinal LR) (Mccullagh, 1980) is a variant of LR that
can predict in ordinal scale. As the reinforced label propagation
in GRAW+ also exploits the ordinal relation among reading
levels, we run OLR here as another baseline.

• Bi-LP is a graph propagation method that applies label propa-
gation on a complex graph (Gao et al., 2015; Jiang, 2011). Bi-
LP builds two separate subgraphs from cBoW view and lin-
guistic view, and connects them using the bipartite subgraph.
The label propagation algorithm is performed on the integrated
graph and leads to two distributions for each document. A

TABLE 2. Statistics of the English and Chinese data sets.

Data set Language #Grade #Doc #Sent #Word

CPT Chinese 6 637 16,145 234,372
ENCT English 4 279 4,671 62,921
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simple average is used to determine the final class label of each
document.

• GRAW (Jiang et al., 2015) is the previous version of our
method. We verify if GRAW+ can improve the performance of
GRAW by adding new facilities.

For the four baseline classification models (that is, LR,
SVM, TSVM, and OLR), documents are represented as
feature vectors. To make a fair comparison, we build the
feature vector by concatenating two sets of features: the
linguistic features used in this article (denoted Linguistic),
and the TF-IDF features (denoted TF-IDF), since GRAW+
incorporates both.

For GRAW+, we apply the reinforced label propagation
on each of the three graphs: Gc, Gl, and Gcl, denoted as
GRAWc

+ , GRAW
l
+ , GRAW

cl
+ , respectively. Unless other-

wise specified, we fixed η to 3, α to 0, and β to 0.5. λ and
k are tuned on the development set. Sentences from the
whole data set are used as the auxiliary text corpus. LR is
used to build the preclassifier for the reinforced label
propagation.

Table 3 gives the average performance of each method
on both data sets where the proportion of the labeled (train-
ing) set is 0.7. Specifically, the precision, recall, and
F1-measure of all the methods are calculated by averaging
the results on all reading (grade) levels on either English or
Chinese data sets. The values marked in bold in each

column refer to the maximum (best) measures gained by
the methods.

From Table 3, the readability formulas (SMOG and FK)
perform poorly in both the precision and recall measures,
so that their F1-measures are generally the poorest. How-
ever, SMOG and FK still have acceptable performance on
the English data set ENCT. The unigram model (SUM)
performs a little better than the readability formulas. On
ENCT, it has relatively good performance, while on the
Chinese data set CPT, its performance is not satisfactory.
Both V&M on ENCT and Jiang on CPT perform well,
which means both the linguistic features developed and the
classifiers trained are useful. The two word embedding
based methods (SG-NN and SG-KM-SVM) achieve better
performance measures than SUM on both data sets. On
ENCT, SG-NN performs better than V&M. By adopting
features from our proposed two views, the two commonly
used models (SVM and LR) perform a little better than
V&M and Jiang, which demonstrates the usefulness of the
two views. The transductive method (TSVM) slightly out-
performs SVM and LR, which suggests that the unlabeled
documents can provide valuable information for readability
classification. In addition, by adding the TF-IDF features
into the feature set, the performance of both SVM and LR
have improved, but the performance of TSVM becomes
worse. This may be due to the heterogeneous spaces of the
two views, which should not be roughly combined through

TABLE 3. The average precision, recall, and F1-measures (%) of the 11 methods for readability assessment on either data set (the labeling proportion
is 0.7).

Methods

CPT ENCT

Precision Recall F1-measure Precision Recall F1-measure

SMOG 28.48 25.38 21.12 55.00 41.41 41.20
FK 34.48 24.68 18.73 60.78 45.65 46.16
SUM 37.39 33.35 33.78 71.18 71.45 67.44
V&M — — — 86.98 85.08 85.63
Jiang 48.07 47.53 47.30 — — —

SG-NN 45.58 45.87 44.96 88.93 88.17 88.24
SG-KM-SVM 40.96 40.77 39.98 80.87 79.92 80.33
SVM Linguistic 48.43 48.01 47.83 87.95 87.08 86.85

TF-IDF 43.10 44.64 42.47 92.26 90.03 90.66
Linguistic+TF-IDF 51.04 51.26 50.74 88.02 86.00 85.96

LR Linguistic 46.53 46.43 46.16 88.05 87.16 87.28
TF-IDF 33.10 34.00 30.65 88.26 86.18 86.69

Linguistic+TF-IDF 46.64 46.78 46.22 90.80 89.17 89.67
TSVM Linguistic 53.32 51.28 48.95 90.57 87.72 88.31

TF-IDF 37.55 38.92 30.93 28.54 46.28 35.30
Linguistic+TF-IDF 44.35 41.12 33.47 27.83 45.14 34.43

OLR Linguistic 51.02 47.93 47.98 51.53 54.40 49.93
TF-IDF 34.25 30.38 27.44 55.01 55.35 53.18

Linguistic+TF-IDF 51.90 50.51 49.27 62.62 62.33 60.27
Bi-LP LP 46.52 46.50 44.92 87.53 83.19 83.63

Reinforced LP 47.41 46.87 45.90 88.71 84.51 85.04
GRAW Gc 50.41 50.60 49.67 90.27 88.16 88.67

Gf 32.99 38.98 32.95 86.16 78.80 78.55
Gcf 51.43 53.26 50.86 92.39 90.68 91.15

GRAW+ Gc 53.70 53.64 53.19 91.86 90.55 90.88
Gl 40.99 43.99 39.97 87.34 80.90 81.00
Gcl 54.21 55.16 54.07 93.33 92.02 92.38
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concatenation. By employing the ordinal relation among
the reading levels, OLR achieves a good performance on
CPT. But on ENCT its performance is poor, which sug-
gests the instability of OLR. On both data sets, both
GRAW and GRAW+ can outperform Bi-LP with either LP
or reinforced LP, which demonstrates that our graph merg-
ing strategy is more effective than the graph integrating
strategy in Bi-LP. By comparing Bi-LP with Gc and Gl

from GRAW+, which roughly correspond to the two sub-
graphs in Bi-LP, it can be observed that the performance
of Bi-LP is better than Gl but worse than Gc. By simply
linking the two subgraphs through the bipartite graph, Bi-
LP may not take full advantage of the two subgraphs. In
general, GRAWcf (applying the general label propagation
on Gcf) performs better than all the above baselines, which
demonstrates the effectiveness of our method. And last, by
applying the reinforced label propagation algorithm,
GRAWcl

+ performs the best in all the three measures on
both data sets.

We studied the effect of the labeling proportion on the
performance of these methods on both data sets. The
F1-measure averaged over the reading levels was used,
since it is a good representative of the three measures
according to Table 3. Figure 5 depicts the performance
trends of the five baseline methods and the two versions of
our method (that is, GRAW and GRAW+) by varying the
labeling proportion from 0.1 to 0.9 step by 0.1.

From Figure 5, neither SMOG nor FK benefits from the
enlarged labeled set. This suggests that the performance of
the readability formulas can hardly be improved by accu-
mulating training data. The other methods achieve better
performance on larger labeled sets, and outperform the
two readability formulas even if the labeling proportion
is small. Both Jiang on CPT and V&M on ENCT perform
better than SUM. GRAW outperforms the baseline
methods over all the labeling proportions on both data sets
and performs well even when the labeling proportion is
small. Again, as the enhanced version of GRAW, the per-
formance of GRAW+ is consistently improved over the
labeling proportions.

Effects of the Word Coupling Matrix

For RQ2, we first compare the coupled BoW model to
the basic BoW model for graph construction. Three graphs
are built by using each of the three coupled BoW matrices
(that is, Msur, Mlex, and Msyn) generated from the three
word coupling matrices (that is, Csur, Clex, and Csyn),
respectively, and one graph is built by using the TF-IDF
(that is, basic BoW) matrix for comparison. The general
label propagation is applied on each graph to measure the
performance of readability classification. The labeling pro-
portion is varied from 0.1 to 0.9 on both the English and
Chinese data sets. Figure 6a depicts the averaged
F1-measures resulting from the four graphs. From
Figure 6a, the three coupled BoW matrices greatly outper-
form the TF-IDF matrix, especially on the Chinese data set
CPT. This demonstrates that the word coupling matrices
are effective in improving the performance of the basic
BoW model for readability assessment.

Second, we investigate which parts of GRAW+ (the
parameters, the word filtering, and the size of auxiliary
sentence set) take effect on the performance of the word
coupling matrices.

The effect of the parameters η and λ. To investigate the
effects of η and λ on the performance of the word coupling
matrices, we vary the values and compute the average
F1-measures on the two data sets, as shown in
Figure 6b. The graph was built using Msyn, and the other
two graphs present similar trends. From Figure 6b, a small
η (for example, 2 or 3) is good on the Chinese data set
CPT. However, on the English data set ENCT, η = 2 leads
to the poorest performance. It shows that the increasing of
η causes vibrated performance, and the trend is further
complicated when involving λ. Above all, η = 3 gives a
preferable option on both data sets. For λ, most matrices
exhibit similar trends that rise first and then keep stable on
both data sets, while some may drop when λ is too great.
This suggests that making a relatively large number of
neighbors for each word (that is, λ = 2,800 on CPT and

FIG. 5. The average F1-measures of the seven methods on both data sets (Jiang is running on CPT only, while V&M is running on ENCT only) with the
labeling proportion varied from 0.1 to 0.9 step by 0.1. [Color figure can be viewed at wileyonlinelibrary.com]
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λ = 2,000 on ENCT) will result in an effective word cou-
pling matrix.

The effect of word filtering. To investigate the effect of
the word filtering strategy on the performance of the
coupled BoW model, we vary the ratio α of filtered words,
and compute the average F1-measures resulting from the
three coupled BoW matrices (that is, Msur, Mlex, and Msyn).
The random filtering is depicted for comparison, which fil-
ters out words from the vocabulary randomly. From
Figure 6c, we find that the random filtering performs worse
than our word filtering strategy on both data sets. By
employing our word filtering strategy, a stable performance
can be attained for all three coupled BoW matrices on both
data sets when no more than 40% words are filtered out.

The effect of the size of S. To investigate if the size of
S (that is, the sentence set) takes effect on the performance
of GRAW+, we vary the size of S by randomly removing
sentences from it. Figure 6d depicts the average
F1-measures resulting from the three coupled BoW matri-
ces. From Figure 6d, on the Chinese data set CPT, the per-
formance of GRAW+ suffers little from removing
sentences, even if only 20% of sentences are left for build-
ing the word coupling matrices. However, on the English
data set ENCT, the mean performance drops evidently and
the deviation increases evidently when too many sentences
are removed. This suggests that cumulating a sufficient text
corpus is required for building a suitable word coupling
matrix for the coupled BoW model, and factors other than
the number of sentences may influence the corpus quality,
which will be discussed later.

Effectiveness of Two-View Graph Propagation

For RQ3, we conducted experiments to validate the
effectiveness of the graph merging strategies and the rein-
forced label propagation algorithm.

Effectiveness of graph merging. We compared graphs
built on singular coupled BoW matrix (that is, Gsur, Glex,
and Gsyn) to the intra-view merged graph (that is, Gc) and
the inter-view merged graph (that is, Gcl). Figure 7a depicts
the averaged F1-measures resulting after applying the gen-
eral label propagation on these graphs. From Figure 7a, the
merged graph Gc outperforms the three basic graphs on
both data sets in most cases. Within the three singular
matrices, Gsyn performs best, especially on the English data
set ENCT, where it can outperform Gc slightly when the
labeling proportion is small (0.2−0.4). By combining the
graph from the linguistic view, Gcl performs evidently bet-
ter than Gc on both data sets, while Gl always performs the
poorest. Figure 7b further validates the effectiveness of
the graph merging strategies. By merging the graph from
the linguistic view, all the cBoW-based graphs (green bars)
get consistently improved performance (yellow bars). The
intra-view merging strategy provides a stable improvement
for all the graphs built from the cBoW view.

To study the effect of β (in Equation 10) on the perfor-
mance of the merged graph Gcl, we present the results of
applying the general label propagation on Gcl with varied β
in Figure 7c. From Figure 7c, Gcl performs well when β is
in range [0.4, 0.8] on CPT and [0.2, 0.4] on ENCT. This
means that the cBoW view requires more weight on CPT
than on ENCT. Note that the graph with β = 0 equals Gl,
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The effects of η and λ on the performance of the word coupling matrix
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The effects of word filtering rate α on the performance of the word
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The effects of the size of S on the performance of the word coupling

matrix

FIG. 6. The performance comparison among the word coupling matrices constructed from different perspectives. [Color figure can be viewed at
wileyonlinelibrary.com]
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which stands for the linguistic view. The sharp rises at 0.1
on both data sets indicate the necessity of the cBoW view.

To verify that graph merging is superior to matrix concat-
enation, we present the averaged F1-measures resulting after
applying the general label propagation algorithm on graphs
built by matrix concatenation in Table 4. “sur�lex�syn” refers
to the graph built by concatenating the three coupled TF-
IDF matrices and “sur�lex�syn�lin” refers to the graph built
by concatenating the three coupled TF-IDF matrices and the
linguistic matrix. The former is compared to the intra-view
graph merging strategy, while the latter is compared to the
inter-view graph merging strategy. As shown in Table 4, the
two graph merging strategies always outperform the matrix
concatenation on both data sets. Besides, “sur�lex�syn�lin”
performs worse than “sur�lex�syn,” which implies that matrix
concatenation is not a good choice in integrating heteroge-
neous vector space models.

Effectiveness of reinforced label propagation. To study
the effectiveness of the reinforced label propagation, we
compared the general label propagation algorithm to the
reinforced label propagation algorithm. Figure 7d depicts
the boxplots of applying the two label propagation algo-
rithms on the three singular and two merged graphs.

Figure 7d, shows that the reinforced label propagation
algorithm outperforms the general label propagation algo-
rithm on both data sets no matter which of the five graphs
is used, which means that our enhancement to the general
label propagation algorithm is effective, and the ordinal
relation among reading levels shall be utilized. Since pre-
classification is required to get the a priori labels, the rein-
forced label propagation provides a way to combine two
weak classifiers into a stronger one.

External Corpus for Constructing Word Coupling Matrix

For RQ4, we investigated the effects of using external
corpus on constructing the word coupling matrix. We col-
lect two external corpora for both languages: the Chinese
Wikipedia (denoted Cwiki) and the English Wikipedia
(denoted Ewiki), as shown in Table 5. For the documents
in Cwiki, we use the ICTCLAS tool (Zhang, 2013; Zhang
et al., 2003) to do the word segmentation.

Different from previous experiments, which a construct
word coupling matrix based on the target data set (CPT or
ENCT) itself, we conducted experiments to verify if we
can use the external text corpus for constructing universal
word coupling matrices. Figure 8 depicts the performance

FIG. 7. The performance comparison among the graph merging strategies and the reinforced label propagation algorithm. [Color figure can be viewed at
wileyonlinelibrary.com]

TABLE 4. Comparison between the graph merging strategies and the matrix concatenation strategies.

Strategy CPT ENCT

Matrix concatenation sur•lex•syn 47.45 88.43
sur•lex•syn•lin 45.82 86.44

The intra-view merged graph Gc 49.67 88.67
The inter-view merged graph Gcl 51.54 91.16
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of applying the general label propagation algorithm on Gsur

in line charts, where the trends in different colors corre-
spond to the word coupling matrices built using a different
corpus. From Figure 8, it shows that the external corpus
(that is, Cwiki) alone can achieve good performance for
Chinese when the size is large enough (for example, larger
than 8 × 104). However, for English, only using the exter-
nal corpus is not enough. The reason may be that there is a
great difference between ENCT and the Ewiki corpus, and
the word matrices built on Ewiki alone is insufficient. In addi-
tion, by combining the target data set with the external corpus
(that is, the black line), the performance can be consistently
improved. This suggests that the external text corpus is bene-
ficial in enhancing the quality of the word coupling matrices.

To further study the effect of the external text corpus on
GRAW+, we applied the two label propagation algorithms
on the two merged graphs (that is, Gc and Gcl). The results
are listed in Table 6. From Table 6, on the Chinese data
set, as compared with the internal corpus, the performance
of Cwiki is a little worse with Gc, but becomes comparable
to Gcl. This suggests that GRAW+ can make the Cwiki
corpus a suitable substitution in constructing effective
word coupling matrices. On the English data set, the obser-
vation is similar, and by mixing the external and internal
corpus, the performance can be further improved.

Discussion

During the experiments, we mainly studied our method
GRAW+ from two perspectives. In the first perspective,
we verified whether GRAW+ is effective compared to the
current well-known readability assessment methods. We
compared GRAW+ with the readability formulas, the lan-
guage model-based method, the linguistic feature-based
methods, and the state-of-the-art word embedding-based
methods. The experiment results show that GRAW+ per-
forms the best among all these methods on both English
and Chinese data sets. The reason may be that the baseline
methods only evaluate the readability of documents from
either the vocabulary view or linguistic view, while our
method employs both views. In addition, it can be found
that the existing word embedding-based methods are rather
preliminary for readability assessment, and do not take the
sequence of words into consideration, which will ignore the
syntactic difficulty and discourse difficulty of documents.
In our future work, we plan to capture the word sequences
and sentence structures, and obtain the high-level represen-
tation of documents using the deep neural networks.

In the second perspective, we studied which factors will
mostly affect the performance of GRAW+. Factors such as
the GRAW parameters, the word filtering strategies, and

TABLE 5. Statistics of the external corpora for both languages.

External corpus Language #Sent #Word

Cwiki Chinese 200,000 4,788,173
Ewiki English 40,000 948,755

FIG. 8. The effects of using external text corpus on the performance of the word coupling matrix. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 6. Constructing the word coupling matrix by using external text corpus.

GRAW+

Chinese English

CPT Cwiki Cwiki+CPT ENCT Ewiki Ewiki+ENCT

General LP Gc 49.67 47.70 49.55 88.67 83.05 89.45
Gcl 51.54 50.72 51.13 91.16 89.59 91.30

Reinforced LP Gc 53.19 51.82 52.01 90.88 86.97 90.87
Gcl 54.07 54.25 53.94 92.38 91.08 92.39
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the size of the auxiliary sentence set were studied in the
experiments. There are still others we have not considered,
such as the word sense ambiguity, which may affect the
reading difficulties of words under different contexts. For
example, words with multiple meanings may bring an extra
burden to readers in identifying the proper sense within the
contexts, and thus affect the readability. In this article, we do
not explicitly take the word sense ambiguity into consider-
ation when building the BoW model. However, the reading
difficulty of a word is estimated by its difficulty distribution,
which may imply whether the word has multiple meanings
in a degree. If a word has multiple meanings of different
reading difficulties, its difficulty distribution will reflect such
properties. The explicit exploration of word sense ambiguity
and its effect on readability is planned in our future work.

Conclusion

In this article we proposed a two-view graph propaga-
tion method with word coupling for readability assessment.
The coupled bag-of-words model was designed to model
the relationship among text documents on readability,
which can improve the accuracy of readability assessment.
The model can be used with the linguistic features in the
graph-based classification framework, which includes
graph construction, merging, and label propagation. The
reinforced label propagation algorithm was developed to
make use of the ordinal relation among reading levels.
Experiments were conducted on both Chinese and English
data sets. The results show that our method can outperform
the state-of-art methods for readability assessment. In addi-
tion, the separate experiments demonstrate the usefulness
of the coupled bag-of-words model, the graph merging
strategies, and the reinforced label propagation algorithm
respectively.

In future work, we plan to strengthen our method from
the following perspectives: (i) We will explore the effects
of semantic factors including the word sense ambiguity on
readability assessment of texts. (ii) We will extend the set
of linguistic features by considering the coherence features
and domain-concept features. (iii) We will test our method
on extra data sets of different languages, especially Chi-
nese, and adapt the method to improve its effectiveness on
specific languages. (iv) We will design the end-to-end neu-
ral networks for readability assessment, in order to express
the reading difficulties from different levels, for example,
vocabulary, syntactic, semantic, and others.
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