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Abstract—We have seen an emerging trend towards wearables
nowadays. In this paper, we focus on smart glasses, whose current
interfaces are difficult to use, error-prone, and provide no or
insecure user authentication. We thus present GlassGesture, a
system that improves Google Glass through a gesture-based
user interface, which provides efficient gesture recognition and
robust authentication. First, our gesture recognition enables the
use of simple head gestures as input. It is accurate in various
wearer activities regardless of noise. Particularly, we improve the
recognition efficiency significantly by employing a novel similarity
search scheme. Second, our gesture-based authentication can
identify owner through features extracted from head movements.
We improve the authentication performance by proposing new
features based on peak analyses, and employing an ensemble
method. Last, we implement GlassGesture and present extensive
evaluations. GlassGesture achieves a gesture recognition accuracy
near 96%. For authentication, GlassGesture can accept autho-
rized users in near 92% of trials, and reject attackers in near
99% of trials. We also show that in 100 trials imitators cannot
successfully masquerade as the authorized user even once.

I. INTRODUCTION

In recent years, we have seen an emerging trend towards

wearables, which are designed to improve the usability of

computers worn on the human body, while being more aesthet-

ically pleasing and fashionable at the same time. One category

of wearable devices is smart glasses (eyewear), which are

usually equipped with a heads-up, near-eye display and various

sensors, mounted on a pair of glasses. Among many kinds

of smart eyewear, Google Glass (Glass for short) is the most

iconic product. However, since Glass is a new type of wearable

device, the user interface is less than ideal.

On one hand, there is no virtual or physical keyboard

attached to Glass. Currently, the most prominent input method

for Glass has two parts. However, each of these input methods

suffers in many scenarios. First, there is a touchpad mounted

on the right-hand side of the device. Tapping and swiping on

the touchpad is error-prone for users: 1) The user needs to

raise their hands and fingers to the side of their forehead to

locate the touchpad and perform actions, which can be difficult

or dangerous when the user is walking or driving. 2) Since

the touchpad is very narrow and slim, some gestures, such

as slide up/down, or tap can be easily confused. 3) When

the user puts Glass on their head, or takes it off, it is very

easy to accidentally touch the touchpad, causing erroneous

input. Second, Glass supports voice commands and speech

recognition. A significant drawback is that voice input cannot

be applied in every scenario; for example, when the user is

talking directly with someone, or in a conference or meeting.

An even worse example is that other people can accidentally

activate Glass using voice commands, as long as the command

is loud enough to be picked by Glass. Additionally, disabled

users are at a severe disadvantage using Glass if they cannot

speak, or have lost control of their arms or fine motor skills.

On the other hand, authentication on Glass is very cumber-

some and is based solely on the touchpad [1]. As a wearable

device, Glass contains rich private information including point-

of-view (POV) photo/video recording, deep integration of

social/communication apps, and personal accounts of all kinds.

There will be a severe information leak if Glass is accessed by

some malicious users. Thus, any user interface for Glass needs

to provide schemes to reject unauthorized access. However,

the current authentication on Glass is far from mature: a

“password” is set by performing four consecutive swiping or

tapping actions on the touchpad similar to a traditional four

digit PIN code. This system has many problems. First, the

entropy is low, as only five touchpad gestures (tap, swipe

forward with one or two fingers, or swipe backward with

one or two fingers) are available, which form a limited

set of permutations. Second, these gestures are difficult to

perform correctly on the narrow touchpad, especially when

the user is not still. Third, this sort of password is hard to

remember because it is unorthodox. Finally, this system is

very susceptible to shoulder surfing attacks. Any attacker can

easily observe the pattern from possibly several meters away,

with no special equipment.

Fig. 1: Head Movements

To solve all of these problems, we propose the use of head

gestures (gesture for short) as an alternative user interface

for smart eyewear devices like Google Glass. Because head

gestures are an intuitive option, we can leverage them as
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a hands-free and easy-to-use interface. A head gesture is a

short burst of several discrete and consecutive movements

of the user’s head, as illustrated in Fig. 1. Motion sensors

(i.e. the accelerometer and gyroscope) on Glass are able to

measure and detect all kinds of head movements due to their

high electromechanical sensitivity. However, smart eyewear

presents new challenges for head gesture interface design.

We need to answer questions such as “What are easy-to-

perform head gestures?”, “How do we accurately recognize

those gestures?”, “How do we make the system efficient on

resource-limited hardware?”, and “How does the system reject

unauthorized access?” and so on.
In this paper, we present GlassGesture, a system aiming

to improve the usability of Glass by providing a novel user

interface based on head gestures. We are the first work,

to the authors’ knowledge, to consider head-gesture-based

recognition/authentication problems for smart glasses. First,

GlassGesture provides head gesture recognition as a form

of user interface. This has several advantages against the

current input methods, because head gestures are easy-to-

perform, intuitive, hands-free, user-defined, and accessible for

the disabled. In some situations, it may be considered inap-

propriate or even rude to operate Glass through the provided

touchpad or voice commands. Head gestures in comparison,

can be tiny and not easily noticeable to mitigate the social

awkwardness. Second, the head gesture user interface can

authenticate users. In particular, head gestures have not been

exploited in authentication yet in the literature. We propose

a novel head-gesture-based authentication scheme by using

simple head gestures to answer security questions. For exam-

ple, we ask user to answer a yes-or-no question, by shaking

(no) or nodding (yes) her head. However, an attacker who

knows the answer to the security questions can still access

the device. To mitigate such attacks, we further propose to

leverage unique signatures extracted from such head gestures

to identify the owner of the device from other users. Compared

to the original, touchpad-based authentication, our proposed

head-gesture-based authentication is more resistant to shoulder

surfing attacks , and requires much less effort from the user.
In summary, we make the following contributions:

• For gesture recognition, our system increases the input

space of the Glass by enabling small, easy-to-perform

head gestures. We propose a reference gesture library ex-

clusively for head movements. We utilize activity context

information to adaptively set thresholds for robust gesture

detection. We use a weighted dynamic time warping

(DTW) algorithm to match templates for better accuracy.

We speed up the gesture matching with a novel scheme,

which reduces the time cost by at least 55%.

• For authentication, we prove that “head gestures can be

used as passwords”. We design a two-factor authenti-

cation scheme, in which we ask users to perform head

gestures to answer questions that show up in the near-

eye display. To characterize head gestures, we identify a

set of useful features and propose new features based on

peak analyses. We also explore several optimizations such

as one-class ensemble classifier, and one-class feature

selection, to improve the authentication performance.

• We prototype our system on Google Glass. We design

experiments to evaluate gesture recognition in different

user activities. We collect a total of around 6000 gesture

samples from 18 users to evaluate the authentication

performance. Our evaluation shows that GlassGesture

shows accurate gesture recognition. It can reliably accept

the authorized users and reject attackers.

II. RELATED WORK

Activity Recognition. Researchers have shown that when

smart device is carried with user, it can provide context

information about the user activities [2]–[4]. However, in this

paper, we are not aiming at improving upon the state-of-the-art

activity recognition systems. We use a simple activity detector,

to tune parameters for gesture detection.

Gesture Recognition. It has been shown that gestures as

input can be precise, and fast. While there is a broad range

of gesture recognition techniques based on vision, wireless

signal, touch screen [5]–[7], we focus mainly on motion-

sensor-based gesture recognition because it is low-cost, com-

putationally feasible, and easy to deploy on mobile devices [8].

We differ from these works in that we propose a head gesture

based interface for smart glasses. And we carefully design

the system to work with head gestures which faces different

challenges such as noise from user activities, performance on

resource-constrained devices. For head gesture recognition,

existing work mainly focuses on vision-based methods [9],

while GlassGesture utilizes sensor mounted on user’s head.

For gesture recognition on Google Glass, Head Wake Up

and Head Nudge [10] are two built-in gesture detectors as

experimental features which monitor the angle of head. A

similar open-sourced implementation can be found in [11]. In

contrast, GlassGesture is more advanced which can recognize

self-defined, free-form head gestures efficiently and accurately.

User Authentication. There has been research on au-

thenticating based on the unique patterns they exhibit while

interacting with phone [12]–[17] through touch screens and

motion sensors. These systems show that such authentication

schemes are less susceptible to shoulder surfing, and, don’t

require the user to memorize passcode. For authentication on

Google Glass, work [18] and [19] are touchpad-gesture-based

authentication, which needs continuous user effort to hold up

fingers on the touchpad. Our work is orthogonal that tries to

bring easy authentication to smart glasses using head gestures,

which is simple, hands-free, and requires less effort.

III. GLASSGESTURE SYSTEM DESIGN

In this section, we present the system design of Glass-

Gesture. First, we give an overview of our system and its

architecture. Then we introduce each module and elaborate its

corresponding components.







head gestures have different movement distributions along

each axis. For example, a nodding gesture is much stronger

in the x-axis the the y-axis or z-axis. Weights are calculated

by the std on each axis of the template as

wx =
std(Gtx)

std(Gtx) + std(Gty) + std(Gtz)

The best match (minimal D(l, lt)) is optimized in the sense

of an optimal alignment of those samples. We can say that

G matches Gt, if dtw(G,Gt) is below a certain threshold.

To recognize which gesture is present in a given window, we

need to run DTW iterating all templates. Whichever template

has the lowest DTW distance with the target, and is below a

safety threshold, is selected as the recognition result.
3) Efficient Similarity Search: DTW is a pair-wise template

matching algorithm, which means that to detect a gesture

naively, we need to traverse all gesture templates. It costs

O(N2) to compare two time series at length of N (we set

l = lt = N for simplicity), which is not efficient when there

is a large number of gesture templates. We propose several

schemes to optimize the performance.
Firstly, to reduce the search complexity, we want to build

a k-dimensional (k-d) tree to do k-Nearest Neighbor (kNN)

searches. However, tree branch pruning based on the triangle

inequality will introduce errors if applied directly on DTW

distances between gesture templates, since DTW distance is

a non-metric and does not satisfy the triangle inequality [23].

Therefore, we build the tree using Euclidean distance (ED)

instead, which is a metric distance, and therefore preserves

the triangle inequality, allowing us to do pruning safely.
Secondly, to further reduce the computation, we down-

sample the inputs before calculating the ED. Then we build

the k-d tree. To recognize a target gesture, we first use the

down-sampled target gesture to do the kNN search over the

k-d tree. Then, we iterate over all k candidate templates to

calculate the DTW distance with the target to find the best

match with no down-sampling for the best accuracy.
The construction of a k-d tree is given in Alg. 1. And the

kNN search is given in Alg. 2. Say we have m templates,

which are all of length N . It costs O(m ∗N2) when iterating

over all the templates to match a target gesture, using DTW.

The set of m gesture templates in N -space (each template

is of length N ) can be firstly down-sampled to nED-space

(each template is at nED length, nED ≪ N ). We build a k-d

tree of O(m) size in O(m logm) time to process the down-

sampled templates, of which the cost can be amortized. The

kNN search query can be answered in O(m
1

nED + k), where

k is the number of query results. In total, the time cost is

O(m
1

nED + k + k ∗N2).
Lastly, we can also down-sample the gesture data before

running DTW after the kNN search. The time cost will become

O(m
1

nED +k+k ∗nDTW
2) where nDTW ≪ N is the down-

sampled length for DTW. However, it is non-trivial to choose

proper nDTW , since we don’t want the down-sampling to

remove important features of the time series. If this is the

case, then the DTW algorithm may fail at differentiating two

slightly different gestures. We evaluate nDTW through our

experiments in the evaluation section.

C. Head-Gesture-based Authentication

Basic Idea. As we mentioned previously, Glass does not

have a robust authentication scheme. To secure the interface in

GlassGesture, we propose the use of signatures extracted from

simple head gestures. In order to lead the user to perform a

natural and instinctual gesture, a “yes or no” security question,

that can be answered using head gestures, is presented on the

near-eye display. The user answers with head movements. In

this way, the instinctual gestures (nodding and shaking) can be

considered consistent head movements. After that, the answer

(gestures) will be verified by the system. Features are extracted

from motion sensors, then fed into a trained classifier. If

the answer is correct and the classifier labels the gesture as

belonging to the user, the user will be accepted. Otherwise, it

will reject the user. Thus, we form a two-factor authentication

scheme. While we mainly test the feasibility of the “nod”

and “shake” gestures, since they convey social meanings in

answering questions, we do not rule out the possibility of

other head gestures. This scheme has several advantages over

the existing authentication done on the touchpad. First, the

user does not have to remember anything, as the signatures

we extract are inherent in their movement/gesture. Second,

nod and shake are simple gestures taking almost no effort

from user. Finally, an attacker cannot brute-force this system

even with significant effort, because 1) the near-eye display

is a private display, which can prevent shoulder surfing on

the secure questions; 2) the signature of the head gestures are

hard to observe by the human eye, unaided by any special

equipment. Furthermore they are difficult to forge even with

explicit knowledge of the features.

Threat Model. We have identified three types of possible

attackers. The Type-I attacker has no prior information what-

soever. This attacker simply has physical access to the user’s

Glass and attempts to authenticate as the user. Type-I attacks

are very likely to fail and ultimately amount to a brute force

attack, which can be mitigated by locking the device after a

few consecutive authentication failures. The Type-II attacker

may know the answer to the user specific security questions,

but will try to authenticate with head gestures in their own

natural styles (not trying to imitate the correct user’s motions

or features). The Type-III attacker, the most powerful attacker,

not only knows the answers to the security questions, but

also is able to observe authentication instances (e.g. through

a video clip). The attacker can try to perform the gesture in a

similar manner as the owner, in an attempt to fool the system.

Note that, there is no security mechanism which can guarantee

that the attacker will not be able to obtain the data on the

device once the attacker has physical access. The proposed

authentication method can slow the attacker down, foil naive

or inexperienced attackers, and make the task of extracting

data from the device more difficult.

Authentication Setup. In this offline setup phase, the user

first needs to establish a large set of security questions with



Algorithm 1 Build KD-Tree

1: procedure BUILD KDTREES( T, nED)
2: for each template t in T do
3: downsampling to length-nED

4: stored in Tdown.
5: end for
6: Build a KD Tree from Tdown using

Euclidean distance, as Tr

7: end procedure

Algorithm 2 kNN search.

1: procedure KNN SEARCH(Tr, t, k)
2: put k nearest neighbors of target t in

tree Tr into C.
3: for each candidate in C do
4: run DTW on target and candidate.
5: end for
6: return index of minimal DTW distances
7: end procedure

Fig. 6: K-S test results for gesture Nod and
Shake

answers. These questions could be something like “Is Ford

the maker of your first car?”, “Is red your favorite color?” etc.

Next, the user is also involved in contributing an initial training

set, from which a classifier model can be built. Because

the classifier requires some training samples before sufficient

accuracy is achieved (>30 training samples in our evaluation),

we optionally propose that the system can leverage the gesture

recognition module to opportunistically collect instances of

the “nod” and “shake” gestures. Whenever GlassGesture rec-

ognizes these gestures, we store these instances for classifier

training in the authentication module.

Feature Set. We select statistical features such as, mean,

standard deviation (std), root mean square (rms), kurtosis,

skewness, median absolute deviation (mad), zero-crossing rate

(zcr) and inter-quartile range (iqr). We also add features like

energy, duration and inter-axis correlation (iac). Additionally,

we add a new category of features called peak features (in-

cluding average peak-to-peak duration, average peak-to-peak

amplitude, and peak number) by analysing peaks in the motion

sensor data, which we have found effective at characterizing

movements like head gestures. We collect motion sensor data

of gesture samples from 18 users (gender: m/f: 14/4; age: 20-

30: 11, 30-40: 5, 40+: 2.) while they are answering yes or no

questions using head gestures. We extract features from the

raw accelerometer and gyroscope data on each axis, in total

84 unique features, for each sample. To test the effectiveness

of the selected features, we run a two-sample Kolmogorov-

Smirnov test (K-S test) to see whether the features of different

users are from differentiable distributions. From the results in

Fig. 6, we can find that all the p-values, returned by K-S test,

are smaller than the significant level (0.05), which indicates

the effectiveness of selected features.

Training and Classification. SVM classifies have been

widely used in biometric-based authentication systems and

radial basis function (RBF) kernels have been shown to have

good performance [13], [14]. For the authentication problem,

a one-class classifier is the most practical model since, at the

training phase, the system can only gather training samples

from the authorized user. However, ideally, if the system

is able to gather enough negative instances, the one-class

classifier might be outperformed by a two-class classifier,

eventually. Therefore, for practicality concerns, we report

the one-class classifier results to assess our gesture-based

authentication system. The training phase happens offline. We

use a grid search to get the optimal parameters for the one-

class SVM classifier (OCSVM) and the RBF kernel with a

10-fold cross validation. To further improve the classification

performance, we employ a one-class ensemble SVM method

(OCESVM) [24] to combine multiple classifiers. The basic

idea is that we collect and rank multiple sets of parameters

by the true positive rate (TPR) with a constraint on the false

positive rate (FPR <1%) during the grid search. Then the

top-r (we set r = 5 empirically) classifiers are chosen to

form an ensemble classifier using majority voting on the

classification decisions. We use the trained model to classify

the test samples. The test samples can be labeled in one of two

ways: 1) samples from the authorized user; 2) samples from

some other, unauthorized user. We will present the evaluation

of our training and classification in next section.

Feature Selection. While our features are extracted from

three axes, it is possible that a gesture in 3D space may be

well characterized by features extracted from data of only one

(1D) or two axes (2D). Therefore, we apply recursive feature

elimination (RFE) [25] to eliminate redundant or useless

features, which will increase accuracy and reduce delay. In

RFE, the training process will recursively select a subset of

the features, which works best on preliminary data. However,

RFE usually works with multi-class classifiers, not one-class

classifiers. Therefore, we propose a new way of applying

RFE in one-class classification. The training set in one-class

classification are all positive instances (same class labels). The

basic idea is to divide the training set into several groups

evenly and manually assign each group a different virtual class

label, to turn the one-class training set into a multi-class one.

In applying of RFE onto this “fake” multi-class training set, we

use a 10-fold cross validation and vote on the features in each

run. Since features which top the voting result contribute most

in differentiating those virtual groups, we eliminate features

with more than e votes and finally train a one-class SVM

classifier with the rest of features. The problem here is how

to determine the value of e. Through our experiments we

empirically set e = 3, which gives the best performance in

most of our trials. We will evaluate this feature selection

scheme later.

IV. EVALUATION

Currently, we have implemented GlassGesture as a Google

Glass application. We adopt FastDTW implementation [26]







know whether an Type-III attacker, can fool the authentication

system. We start by taking a short video of a victim while she

is performing gesture-based authentication, and then present

this video to attackers. We give attackers enough time to

learn, practise, and mimic the victim. And we only start the

authentication process whenever each attacker feels she is

ready. We give 5 attackers 10 chances for each gesture and

unlimited access to the reference video. In all of our tests (100

trials), attackers are never able to fool the system and (falsely)

identified as authorized users. From the experiment, we find

that an imitator fails in mimicking the head gesture because 1)

it is not easy to recover every details of head gestures recorded

by sensitive motion sensors through vision observation; 2) it

is not easy to control the head movement precisely and make

it like a natural movement during mimicking. The different

muscle distributions of head and neck in human individuals

will add different features to the sensor recordings.

C. System Performance

We report the running time of several important functions:

DTW time cost in gesture recognition, training time cost

(offline on a remote machine), and classification time cost

in authentication. The time cost of gesture recognition grows

linearly with the number of templates, while the time of

running one instance of DTW is rather small as 30.2 ms. The

training is offloaded to a remote machine and cost average

42.8 seconds per user, which is affordable since the request of

training and retraining is relatively rare after the initial setup.

Classification runs on the Glass, of which the cost (28.6 ms)

of single instance is almost unnoticeable by users.

D. Other considerations

Due to space limit, we briefly discuss other practical con-

siderations. 1) Authentication Frequency: The frequency is

depend on the usage pattern of user. The default setting is

to authenticate user after booting or being taken-off, which

is a rather infrequent. 2) Biometric Invariance: We have been

keeping collecting gesture samples from several users during

a week. We have not noticed much difference in recogni-

tion/authentication accuracy. However, we do add template

adaptation [8] and classifier retraining to our system in case of

any performance deterioration. And we have fail-safe authenti-

cation for consecutive failures. We are still lack of enough data

to claim that human head gesture is invariant in a long term.

We leave those work in the future. 3) Power Consumption:

Based on the energy consumption reported in [4] and [28],

the battery life of constantly sampling sensors is 265 mins(300

mins daily in normal usage). We are expecting a much longer

lifetime since our implementation is not always-on. The device

will enter a low-power mode after a short period of inactive. It

responses to wake-up events [10] and then the gesture interface

will be enabled accordingly.

V. CONCLUSION

In this paper we propose GlassGesture to improve the us-

ability of Google Glass. Currently, Glass relies on touch input

and voice command and suffers from several drawbacks which

limits its usability. GlassGesture provides a new gesture-based

user interface with gesture recognition and authentication,

which enable users to use head gesture as input and protect

Glass from unauthorized attackers.
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